A Two-Stage Bin Packing Algorithm for Minimizing Machines and Operators in Cyclic Production Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 6 (2025), p. 367
Autor principal: Hadad Yossi
Otros Autores: Keren Baruch
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223864745
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18060367  |2 doi 
035 |a 3223864745 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Hadad Yossi 
245 1 |a A Two-Stage Bin Packing Algorithm for Minimizing Machines and Operators in Cyclic Production Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents a novel, two-stage algorithm that minimizes the number of machines and operators required to produce multiple product types repeatedly in cyclic scheduling. Our algorithm treats the problem of minimum machines as a bin packing problem (BPP), and the problem of determining the number of operators required is also modeled as the BPP, but with constraints. The BPP is NP-hard, but with suitable heuristic algorithms, the proposed model allocates multiple product types to machines and multiple machines to operators without overlapping setup times (machine interference). The production schedule on each machine is represented as a circle (donut). By using lower bounds, it is possible to assess whether the number of machines required by our model is optimal; if not, the optimality gap can be quantified. The algorithm has been validated using real-world data from an industrial facility producing 17 types of products. The results of our algorithm led to significant cost savings and improved scheduling performance. The outcomes demonstrate the effectiveness of the proposed algorithm in optimizing resource utilization by reducing the number of machines and operators required. Although this study focuses on a manufacturing system, the model can also be applied to other contexts. 
653 |a Lower bounds 
653 |a Scheduling 
653 |a Machine interference 
653 |a Optimization 
653 |a Production scheduling 
653 |a Workforce 
653 |a Approximation 
653 |a Operators 
653 |a Algorithms 
653 |a Packing problem 
653 |a Production planning 
653 |a Literature reviews 
653 |a Manufacturing 
653 |a Resource utilization 
653 |a Heuristic 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Textiles 
700 1 |a Keren Baruch 
773 0 |t Algorithms  |g vol. 18, no. 6 (2025), p. 367 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223864745/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223864745/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223864745/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch