Fixed Point Approximation for Enriched Suzuki Nonexpansive Mappings in Banach Spaces
Na minha lista:
| Publicado no: | Axioms vol. 14, no. 6 (2025), p. 426 |
|---|---|
| Autor principal: | |
| Outros Autores: | , , , , |
| Publicado em: |
MDPI AG
|
| Assuntos: | |
| Acesso em linha: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Sem tags, seja o primeiro a adicionar uma tag!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223876448 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2075-1680 | ||
| 024 | 7 | |a 10.3390/axioms14060426 |2 doi | |
| 035 | |a 3223876448 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231430 |2 nlm | ||
| 100 | 1 | |a Filali Doaa |u Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dkfilali@pnu.edu.sa | |
| 245 | 1 | |a Fixed Point Approximation for Enriched Suzuki Nonexpansive Mappings in Banach Spaces | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper investigates the approximation of fixed points for mappings that satisfy the enriched (C) condition using a modified iterative process in a Banach space framework. We first establish a weak convergence result and then derive strong convergence theorems under suitable assumptions. To illustrate the applicability of our findings, we present a numerical example involving mappings that satisfy the enriched (C) condition but not the standard (C) condition. Additionally, numerical computations and graphical representations demonstrate that the proposed iterative process achieves a faster convergence rate compared to several existing methods. As a practical application, we introduce a projection based an iterative process for solving split feasibility problems (SFPs) in a Hilbert space setting. Our findings contribute to the ongoing development of iterative processes for solving optimization and feasibility problems in mathematical and applied sciences. | |
| 653 | |a Approximation | ||
| 653 | |a Methods | ||
| 653 | |a Quantum field theory | ||
| 653 | |a Banach spaces | ||
| 653 | |a Convergence | ||
| 653 | |a Feasibility | ||
| 653 | |a Graphical representations | ||
| 653 | |a Iterative methods | ||
| 653 | |a Hilbert space | ||
| 653 | |a Fixed points (mathematics) | ||
| 653 | |a Enrichment | ||
| 700 | 1 | |a Alamrani Fahad Maqbul |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) | |
| 700 | 1 | |a Esmail, Alshaban |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) | |
| 700 | 1 | |a Alatawi Adel |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) | |
| 700 | 1 | |a Alanazi, Amid Yousef |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) | |
| 700 | 1 | |a Khan, Faizan Ahmad |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) | |
| 773 | 0 | |t Axioms |g vol. 14, no. 6 (2025), p. 426 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223876448/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223876448/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223876448/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |