Fixed Point Approximation for Enriched Suzuki Nonexpansive Mappings in Banach Spaces

Na minha lista:
Detalhes bibliográficos
Publicado no:Axioms vol. 14, no. 6 (2025), p. 426
Autor principal: Filali Doaa
Outros Autores: Alamrani Fahad Maqbul, Esmail, Alshaban, Alatawi Adel, Alanazi, Amid Yousef, Khan, Faizan Ahmad
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3223876448
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14060426  |2 doi 
035 |a 3223876448 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Filali Doaa  |u Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dkfilali@pnu.edu.sa 
245 1 |a Fixed Point Approximation for Enriched Suzuki Nonexpansive Mappings in Banach Spaces 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper investigates the approximation of fixed points for mappings that satisfy the enriched (C) condition using a modified iterative process in a Banach space framework. We first establish a weak convergence result and then derive strong convergence theorems under suitable assumptions. To illustrate the applicability of our findings, we present a numerical example involving mappings that satisfy the enriched (C) condition but not the standard (C) condition. Additionally, numerical computations and graphical representations demonstrate that the proposed iterative process achieves a faster convergence rate compared to several existing methods. As a practical application, we introduce a projection based an iterative process for solving split feasibility problems (SFPs) in a Hilbert space setting. Our findings contribute to the ongoing development of iterative processes for solving optimization and feasibility problems in mathematical and applied sciences. 
653 |a Approximation 
653 |a Methods 
653 |a Quantum field theory 
653 |a Banach spaces 
653 |a Convergence 
653 |a Feasibility 
653 |a Graphical representations 
653 |a Iterative methods 
653 |a Hilbert space 
653 |a Fixed points (mathematics) 
653 |a Enrichment 
700 1 |a Alamrani Fahad Maqbul  |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) 
700 1 |a Esmail, Alshaban  |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) 
700 1 |a Alatawi Adel  |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) 
700 1 |a Alanazi, Amid Yousef  |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) 
700 1 |a Khan, Faizan Ahmad  |u Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); 452009617@stu.ut.edu.sa (A.Y.A.) 
773 0 |t Axioms  |g vol. 14, no. 6 (2025), p. 426 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223876448/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223876448/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223876448/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch