A Linearized Conservative Finite Difference Scheme for the Rosenau–RLW Equation
Guardado en:
| Udgivet i: | Axioms vol. 14, no. 6 (2025), p. 395 |
|---|---|
| Hovedforfatter: | |
| Andre forfattere: | , , |
| Udgivet: |
MDPI AG
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223876456 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2075-1680 | ||
| 024 | 7 | |a 10.3390/axioms14060395 |2 doi | |
| 035 | |a 3223876456 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231430 |2 nlm | ||
| 100 | 1 | |a Li Yongzheng |u Faculty of Science, Civil Aviation Flight University of China, Guanghan 618307, China; lyz@cafuc.edu.cn (Y.L.); renlongcheng@cafuc.edu.cn (L.R.) | |
| 245 | 1 | |a A Linearized Conservative Finite Difference Scheme for the Rosenau–RLW Equation | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a A novel two–level linearized conservative finite difference method is proposed for solving the initial boundary value problem of the Rosenau–RLW equation. To preserve the energy conservation property, the Crank–Nicolson scheme is employed for temporal discretization, combined with an averaging treatment of the nonlinear term between the nth and <inline-formula>(n+1)</inline-formula>th time levels. For spatial discretization, a centered symmetric scheme is adopted. Meanwhile, the discrete conservation law is presented, and the existence and uniqueness of the numerical solutions are rigorously proved. Furthermore, the convergence and stability of the scheme are analyzed using the discrete energy method. Numerical experiments validate the theoretical results. | |
| 653 | |a Propagation | ||
| 653 | |a Finite volume method | ||
| 653 | |a Numerical analysis | ||
| 653 | |a Linearization | ||
| 653 | |a Accuracy | ||
| 653 | |a Mathematical analysis | ||
| 653 | |a Energy methods | ||
| 653 | |a Boundary value problems | ||
| 653 | |a Finite difference method | ||
| 653 | |a Discretization | ||
| 653 | |a Crank-Nicholson method | ||
| 700 | 1 | |a Ren Longcheng |u Faculty of Science, Civil Aviation Flight University of China, Guanghan 618307, China; lyz@cafuc.edu.cn (Y.L.); renlongcheng@cafuc.edu.cn (L.R.) | |
| 700 | 1 | |a Hu, Jinsong |u College of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu 6111730, China; hjsong1@cdtu.edu.cn | |
| 700 | 1 | |a Zheng Kelong |u Faculty of Science, Civil Aviation Flight University of China, Guanghan 618307, China; lyz@cafuc.edu.cn (Y.L.); renlongcheng@cafuc.edu.cn (L.R.) | |
| 773 | 0 | |t Axioms |g vol. 14, no. 6 (2025), p. 395 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223876456/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223876456/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223876456/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |