A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Bioengineering vol. 12, no. 6 (2025), p. 654
Հիմնական հեղինակ: Lucas, Hermann
Այլ հեղինակներ: Kremling, Andreas
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3223876903
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12060654  |2 doi 
035 |a 3223876903 
045 2 |b d20250101  |b d20251231 
100 1 |a Lucas, Hermann 
245 1 |a A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant Escherichia coli strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables. 
651 4 |a United States--US 
653 |a Process variables 
653 |a Glycerol 
653 |a Biomass 
653 |a Least squares method 
653 |a State estimation 
653 |a Measurement techniques 
653 |a Batch culture 
653 |a E coli 
653 |a Kalman filters 
653 |a Batch processing 
653 |a Proteins 
653 |a Spectrum analysis 
653 |a Phenylalanine 
653 |a Knowledge 
653 |a Sensors 
653 |a State variable 
653 |a Optimization 
653 |a Tyrosine 
653 |a Acetic acid 
653 |a Fermentation 
700 1 |a Kremling, Andreas 
773 0 |t Bioengineering  |g vol. 12, no. 6 (2025), p. 654 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223876903/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223876903/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223876903/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch