Modular Soft Sensor Made of Eutectogel and Its Application in Gesture Recognition

Guardado en:
Detalles Bibliográficos
Publicado en:Biosensors vol. 15, no. 6 (2025), p. 339
Autor principal: Fan Fengya
Otros Autores: Deng Mo, Wei, Xi
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223880359
003 UK-CbPIL
022 |a 2079-6374 
024 7 |a 10.3390/bios15060339  |2 doi 
035 |a 3223880359 
045 2 |b d20250601  |b d20250630 
084 |a 231435  |2 nlm 
100 1 |a Fan Fengya  |u School of Computer Science and Technology, University of Science and Technology of China, No. 96, Jinzhai Road Baohe District, Hefei 230026, China; fanfengya@mail.ustc.edu.cn (F.F.); sa20011167@mail.ustc.edu.cn (M.D.) 
245 1 |a Modular Soft Sensor Made of Eutectogel and Its Application in Gesture Recognition 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Soft sensors are designed to be flexible, making them ideal for wearable devices as they can conform to the human body during motion, capturing pertinent information effectively. However, once these wearable sensors are constructed, modifying them is not straightforward without undergoing a re-prototyping process. In this study, we introduced a novel design for a modular soft sensor unit (M2SU) that incorporates a short, wire-shaped sensory structure made of eutectogel, with magnetic blocks at both ends. This design facilitates the easy assembly and reversible integration of the sensor directly onto a wearable device in situ. Leveraging the piezoresistive properties of eutectogel and the dual conductive and magnetic characteristics of neodymium magnets, our sensor unit acts as both a sensing element and a modular component. To explore the practical application of M2SUs in wearable sensing, we equipped a glove with 8 M2SUs. We evaluated its performance across three common gesture recognition tasks: numeric keypad typing (Task 1), symbol drawing (Task 2), and uppercase letter writing (Task 3). Employing a 1D convolutional neural network to analyze the collected data, we achieved task-specific accuracies of 80.43% (Top 3: 97.68%) for Task 1, 88.58% (Top 3: 96.13%) for Task 2, and 79.87% (Top 3: 91.59%) for Task 3. These results confirm that our modular soft sensor design can facilitate high-accuracy gesture recognition on wearable devices through straightforward, in situ assembly. 
653 |a Neodymium 
653 |a Silicones 
653 |a Sensors 
653 |a Magnetic properties 
653 |a Modular equipment 
653 |a Artificial neural networks 
653 |a Prototyping 
653 |a Electrocardiography 
653 |a Gesture recognition 
653 |a Wearable technology 
653 |a Human motion 
653 |a Wearable computers 
653 |a Design 
653 |a Skin 
653 |a Modular units 
653 |a Modular structures 
653 |a Deformation 
653 |a Permanent magnets 
653 |a Hydrogels 
653 |a Neural networks 
653 |a Environmental 
700 1 |a Deng Mo  |u School of Computer Science and Technology, University of Science and Technology of China, No. 96, Jinzhai Road Baohe District, Hefei 230026, China; fanfengya@mail.ustc.edu.cn (F.F.); sa20011167@mail.ustc.edu.cn (M.D.) 
700 1 |a Wei, Xi  |u Department of Biomedical Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, No. 193, Tunxi Road, Hefei 230009, China 
773 0 |t Biosensors  |g vol. 15, no. 6 (2025), p. 339 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223880359/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223880359/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223880359/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch