Quality Management in Chemical Processes Through Fuzzy Analysis: A Fuzzy C-Means and Predictive Models Approach

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:ChemEngineering vol. 9, no. 3 (2025), p. 45
Váldodahkki: Marín Díaz Gabriel
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3223882278
003 UK-CbPIL
022 |a 2305-7084 
024 7 |a 10.3390/chemengineering9030045  |2 doi 
035 |a 3223882278 
045 2 |b d20250101  |b d20251231 
100 1 |a Marín Díaz Gabriel  |u Faculty of Statistics, Complutense University, Puerta de Hierro, 28040 Madrid, Spain; gmarin03@ucm.es 
245 1 |a Quality Management in Chemical Processes Through Fuzzy Analysis: A Fuzzy C-Means and Predictive Models Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ensuring high levels of quality and efficiency is essential for compliance with ISO standards in chemical manufacturing. Traditional methods, such as Statistical Process Control (SPC) and Six Sigma, often lack adaptability and fail to offer interpretable insights. This study proposes a hybrid quality control model based on Explainable Artificial Intelligence (XAI), integrating fuzzy C-means clustering (FCM), machine learning (ML), and Fuzzy Inference Systems (FISs) to enhance defect prediction and interpretability in industrial environments. The approach uses fuzzy clusters to segment production batches, improving the understanding of process variability. A supervised ML model (XGBoost) is trained on historical data to predict defect probabilities, while an explainable FIS refines the final assessment using expert-defined rules. XAI techniques (SHAP and LIME) offer transparency and insight into the decision-making process. Experimental validation using a real-world white wine dataset, evaluated in terms of accuracy and interpretability, shows that the proposed model outperforms traditional approaches in both predictive performance and transparency. The results demonstrate the effectiveness of combining unsupervised clustering, predictive analytics, and fuzzy reasoning in an Industry 4.0 framework. This study provides a scalable and adaptable solution for real-time quality control in chemical manufacturing, improving decision support systems and enabling automated and explainable quality assessments. 
653 |a Quality management 
653 |a Accuracy 
653 |a Datasets 
653 |a Quality control 
653 |a Fuzzy sets 
653 |a Chemical reactions 
653 |a Fuzzy logic 
653 |a Statistical process control 
653 |a Industry 4.0 
653 |a Manufacturing 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Defects 
653 |a Product reliability 
653 |a Quality assessment 
653 |a Decision support systems 
653 |a Artificial intelligence 
653 |a Prediction models 
653 |a Clustering 
653 |a Decision making 
653 |a Process controls 
653 |a Classification 
653 |a Support vector machines 
653 |a Statistical methods 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Real time 
653 |a Six Sigma 
773 0 |t ChemEngineering  |g vol. 9, no. 3 (2025), p. 45 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223882278/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223882278/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223882278/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch