MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Drones vol. 9, no. 6 (2025), p. 434-469
מחבר ראשי: Kabganian Masoud
מחברים אחרים: Hashemi, Seyed M
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3223896150
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9060434  |2 doi 
035 |a 3223896150 
045 2 |b d20250101  |b d20251231 
100 1 |a Kabganian Masoud 
245 1 |a MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. 
653 |a Actuation 
653 |a Maintenance 
653 |a Adaptability 
653 |a Powertrain 
653 |a Systems design 
653 |a Motion control 
653 |a Unmanned aerial vehicles 
653 |a Ship decks 
653 |a Systems stability 
653 |a Proportional derivative 
653 |a Vibration damping 
653 |a Stress concentration 
653 |a Composite materials 
653 |a Robotics 
653 |a Vehicles 
653 |a Aircraft 
653 |a Design optimization 
653 |a Simulation 
653 |a Rollover 
653 |a Multidisciplinary design optimization 
653 |a Undercarriages 
653 |a Durability 
653 |a Weight reduction 
653 |a Drones 
653 |a Vertical takeoff 
653 |a Compliance 
653 |a Complexity 
653 |a Flexing 
653 |a Actuators 
653 |a Landing gear 
653 |a Drone aircraft 
653 |a Aluminum 
700 1 |a Hashemi, Seyed M 
773 0 |t Drones  |g vol. 9, no. 6 (2025), p. 434-469 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223896150/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223896150/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223896150/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch