UAV-Assisted Localization of Ground Nodes in Urban Environments Using Path Loss Measurements

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Drones vol. 9, no. 6 (2025), p. 450-466
Egile nagusia: Bakhuraisa Yaser
Beste egile batzuk: Lim, Heng Siong, Chan, Yee Kit, Hilman Muhammad
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3223899845
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9060450  |2 doi 
035 |a 3223899845 
045 2 |b d20250101  |b d20251231 
100 1 |a Bakhuraisa Yaser  |u Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka 75450, Malaysia; 1211400159@student.mmu.edu.my (Y.B.); ykchan@mmu.edu.my (Y.K.C.) 
245 1 |a UAV-Assisted Localization of Ground Nodes in Urban Environments Using Path Loss Measurements 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a distance estimation error reduction framework to improve ground node localization accuracy in urban environments using an unmanned aerial vehicle (UAV) and path loss measurements. The primary goal of the framework is to bound distance estimation errors arising from inherent inaccuracies in path loss measurements. A k-means clustering algorithm is first applied to identify the region in which the ground node is located. Then, an analytical approach is used to select UAV waypoints. Moreover, a mean-based exponential smoothing approach is employed to refine the path loss measurements of the selected waypoints to mitigate the effects of multipath components that introduce significant errors in distance estimation. Finally, two estimators, maximum likelihood (ML)-based and semidefinite programming (SDP)-based relaxation, are employed to estimate the ground node’s location, validating the effectiveness of the proposed framework. Evaluations using ray tracing simulation data demonstrate a notable improvement in localization accuracy. The proposed framework effectively bounds the distance estimation errors and significantly reduces overall localization errors compared to conventional unbounded methods. Moreover, both estimators with the proposed framework achieve comparable localization accuracy, highlighting the framework’s capability to address key challenges in ML-based localization. 
653 |a Ray tracing 
653 |a Global positioning systems--GPS 
653 |a Accuracy 
653 |a Semidefinite programming 
653 |a Urban environments 
653 |a Cluster analysis 
653 |a Radio frequency 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Clustering 
653 |a Optimization techniques 
653 |a Nodes 
653 |a Waypoints 
653 |a Error reduction 
653 |a Estimators 
653 |a Algorithms 
653 |a Localization 
653 |a Performance evaluation 
653 |a Vector quantization 
700 1 |a Lim, Heng Siong  |u Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka 75450, Malaysia; 1211400159@student.mmu.edu.my (Y.B.); ykchan@mmu.edu.my (Y.K.C.) 
700 1 |a Chan, Yee Kit  |u Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka 75450, Malaysia; 1211400159@student.mmu.edu.my (Y.B.); ykchan@mmu.edu.my (Y.K.C.) 
700 1 |a Hilman Muhammad  |u Faculty of Computer Science, Universitas Indonesia, Kampus Baru UI Depok, Jawa Barat 16425, Indonesia; muhammad.hilman@ui.ac.id 
773 0 |t Drones  |g vol. 9, no. 6 (2025), p. 450-466 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223899845/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223899845/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223899845/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch