Towards Automated Cadastral Map Improvement: A Clustering Approach for Error Pattern Recognition

Guardat en:
Dades bibliogràfiques
Publicat a:Geomatics vol. 5, no. 2 (2025), p. 16-44
Autor principal: Vantas Konstantinos
Altres autors: Mirkopoulou Vasiliki
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223901963
003 UK-CbPIL
022 |a 2673-7418 
024 7 |a 10.3390/geomatics5020016  |2 doi 
035 |a 3223901963 
045 2 |b d20250401  |b d20250630 
100 1 |a Vantas Konstantinos  |u Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 
245 1 |a Towards Automated Cadastral Map Improvement: A Clustering Approach for Error Pattern Recognition 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Positional accuracy in cadastral data is fundamental for secure land tenure and efficient land administration. However, many land administration systems (LASs) experience difficulties to meet accuracy standards, particularly when data come from various sources or historical maps, leading to disruptions in land transactions. This study investigates the use of unsupervised clustering algorithms to identify and characterize systematic spatial error patterns in cadastral maps. We compare Fuzzy c-means (FCM), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and Gaussian Mixture Models (GMMs) in clustering error vectors using two different case studies from Greece, each with different error origins. The analysis revealed distinctly different error structures: a systematic rotational pattern surrounding a central random-error zone in the first, versus localized gross errors alongside regions of different discrepancies in the second. Algorithm performance was context-dependent: GMMs excelled, providing the most interpretable partitioning of multiple error levels, including gross errors; DBSCAN succeeded at isolating the dominant systematic error from noise. However, FCM struggled to capture the complex spatial nature of errors in both cases. Through the automated identification of problematic regions with different error characteristics, the proposed approach provides actionable insights for targeted, cost-effective cadastral renewal. This aligns with fit-for-purpose land administration principles, supporting progressive improvements towards more reliable cadastral data and offering a novel methodology applicable to other LASs facing similar challenges. 
651 4 |a Greece 
653 |a Accuracy 
653 |a Land use 
653 |a Methods 
653 |a Algorithms 
653 |a Automation 
653 |a Artificial intelligence 
653 |a Clustering 
653 |a Spatial data 
653 |a Performance evaluation 
653 |a Land tenure 
653 |a Topography 
653 |a Quality improvement 
700 1 |a Mirkopoulou Vasiliki  |u Department of Informatics, Faculty of Science, University of Western Macedonia, 52100 Kastoria, Greece; vmirkopoulou@uowm.gr 
773 0 |t Geomatics  |g vol. 5, no. 2 (2025), p. 16-44 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223901963/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223901963/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223901963/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch