Development and Evaluation of Adaptive Learning Support System Based on Ontology of Multiple Programming Languages

Uloženo v:
Podrobná bibliografie
Vydáno v:Education Sciences vol. 15, no. 6 (2025), p. 724-755
Hlavní autor: Lalita, Na Nongkhai
Další autoři: Wang, Jingyun, Mendori Takahiko
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3223902517
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15060724  |2 doi 
035 |a 3223902517 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Lalita, Na Nongkhai  |u Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan 
245 1 |a Development and Evaluation of Adaptive Learning Support System Based on Ontology of Multiple Programming Languages 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces an ontology-based approach within an adaptive learning support system for computer programming. This system is designed to deliver personalized programming exercises that are tailored to individual learners’ skill levels. This proposed framework utilizes an ontology, named CONTINUOUS, which encompasses common concepts across multiple programming languages. The system leverages this ontology not only to visualize programming concepts but also to provide hints during practice programming exercises and recommend subsequent programming concepts. The adaptive mechanism is driven by the Elo Rating System, applied in an educational context to dynamically estimate the most appropriate exercise difficulty for each learner. An experimental study compared two instructional modes, adaptive and random, based on six features derived from 1186 code submissions across all the experimental groups. The results indicate significant differences in four of six analyzed features between these two modes. Notably, the adaptive mode demonstrates a significant difference over the random mode in two features: the submission of correct answers and the number of pass concepts. Therefore, these results underscore that this adaptive learning support system may support learners in practicing programming exercises. 
653 |a Java 
653 |a Ontology 
653 |a Cognitive style 
653 |a Semantic web 
653 |a Python 
653 |a Online tutorials 
653 |a Distance learning 
653 |a Skills 
653 |a Programming languages 
653 |a Query expansion 
653 |a Computer programming 
653 |a Knowledge 
653 |a Personalized learning 
653 |a Educational materials 
653 |a Adaptive learning 
653 |a Semantics 
653 |a Learning Activities 
653 |a Rating Scales 
653 |a Influence of Technology 
653 |a Distance Education 
653 |a Experimental Groups 
653 |a Addition 
653 |a Learning Processes 
653 |a Computers 
653 |a Learning Theories 
653 |a Learning Experience 
653 |a Individualized Instruction 
653 |a Instructional Materials 
653 |a Cooperative Learning 
653 |a Time 
653 |a Syntax 
653 |a Fundamental Concepts 
653 |a Problem Solving 
653 |a Integrated Activities 
653 |a Educational Facilities Improvement 
653 |a Classroom Environment 
653 |a Educational Strategies 
700 1 |a Wang, Jingyun  |u Department of Computer Science, Durham University, Durham DH1 3LE, UK; jingyun.wang@durham.ac.uk 
700 1 |a Mendori Takahiko  |u Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan 
773 0 |t Education Sciences  |g vol. 15, no. 6 (2025), p. 724-755 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223902517/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223902517/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223902517/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch