An Efficient and Low-Delay SFC Recovery Method in the Space–Air–Ground Integrated Aviation Information Network with Integrated UAVs

保存先:
書誌詳細
出版年:Drones vol. 9, no. 6 (2025), p. 440-463
第一著者: Yang, Yong
その他の著者: Wang, Buhong, Tian Jiwei, Lyu Xiaofan, Li, Siqi
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3223902533
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9060440  |2 doi 
035 |a 3223902533 
045 2 |b d20250101  |b d20251231 
100 1 |a Yang, Yong  |u School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China; yangyong_123456789@163.com (Y.Y.); lxfxs2022@163.com (X.L.); 15904507151@163.com (S.L.) 
245 1 |a An Efficient and Low-Delay SFC Recovery Method in the Space–Air–Ground Integrated Aviation Information Network with Integrated UAVs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Unmanned aerial vehicles (UAVs), owing to their flexible coverage expansion and dynamic adjustment capabilities, hold significant application potential across various fields. With the emergence of urban low-altitude air traffic dominated by UAVs, the integrated aviation information network combining UAVs and manned aircraft has evolved into a complex space–air–ground integrated Internet of Things (IoT) system. The application of 5G/6G network technologies, such as cloud computing, network function virtualization (NFV), and edge computing, has enhanced the flexibility of air traffic services based on service function chains (SFCs), while simultaneously expanding the network attack surface. Compared to traditional networks, the aviation information network integrating UAVs exhibits greater heterogeneity and demands higher service reliability. To address the failure issues of SFCs under attack, this study proposes an efficient SFC recovery method for recovery rate optimization (ERRRO) based on virtual network functions (VNFs) migration technology. The method first determines the recovery order of failed SFCs according to their recovery costs, prioritizing the restoration of SFCs with the lowest costs. Next, the migration priorities of the failed VNFs are ranked based on their neighborhood certainty, with the VNFs exhibiting the highest neighborhood certainty being migrated first. Finally, the destination nodes for migrating the failed VNFs are determined by comprehensively considering attributes such as the instantiated SFC paths, delay of physical platforms, and residual resources. Experiments demonstrate that the ERRRO performs well under networks with varying resource redundancy and different types of attacks. Compared to methods reported in the literature, the ERRRO achieves superior performance in terms of the SFC recovery rate and delay. 
651 4 |a China 
653 |a Aeronautics 
653 |a Network function virtualization 
653 |a Air traffic 
653 |a Internet of Things 
653 |a Communication 
653 |a Information services 
653 |a Altitude 
653 |a Edge computing 
653 |a Recovery 
653 |a Unmanned aerial vehicles 
653 |a Civil aviation 
653 |a Virtual networks 
653 |a Air traffic control 
653 |a Heterogeneity 
653 |a Redundancy 
653 |a Aircraft 
653 |a Low altitude 
653 |a Delay 
653 |a Cloud computing 
653 |a Aviation 
653 |a Information systems 
653 |a Methods 
653 |a Surveillance 
653 |a Satellites 
700 1 |a Wang, Buhong  |u School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China; yangyong_123456789@163.com (Y.Y.); lxfxs2022@163.com (X.L.); 15904507151@163.com (S.L.) 
700 1 |a Tian Jiwei  |u Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China 
700 1 |a Lyu Xiaofan  |u School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China; yangyong_123456789@163.com (Y.Y.); lxfxs2022@163.com (X.L.); 15904507151@163.com (S.L.) 
700 1 |a Li, Siqi  |u School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China; yangyong_123456789@163.com (Y.Y.); lxfxs2022@163.com (X.L.); 15904507151@163.com (S.L.) 
773 0 |t Drones  |g vol. 9, no. 6 (2025), p. 440-463 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223902533/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223902533/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223902533/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch