The Optimal L2-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel

Guardado en:
Detalles Bibliográficos
Publicado en:Fractal and Fractional vol. 9, no. 6 (2025), p. 368-382
Autor principal: Zhou Haopan
Otros Autores: Zhou, Jun, Chen, Hongbin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223905874
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9060368  |2 doi 
035 |a 3223905874 
045 2 |b d20250101  |b d20251231 
100 1 |a Zhou Haopan  |u Bangor College, Central South University of Forestry and Technology, Changsha 410004, China; 20227879@csuft.edu.cn 
245 1 |a The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method. A fully discrete scheme is constructed by integrating the WG finite element approach for spatial discretization. <inline-formula>L2</inline-formula>-norm stability and convergence analysis of the fully discrete scheme are rigorously established. Numerical experiments are conducted to validate the theoretical findings and demonstrate optimal convergence order in both spatial and temporal directions. The numerical results confirm that the proposed method achieves an accuracy of the order <inline-formula>Oτ+hk+1</inline-formula>, where <inline-formula>τ</inline-formula> and h represent the time step and spatial mesh size, respectively. This work extends previous studies on one-dimensional problems to higher spatial dimensions, providing a robust framework for handling evolution equations with a weakly singular kernel. 
653 |a Finite element method 
653 |a Finite volume method 
653 |a Approximation 
653 |a Evolution 
653 |a Finite element analysis 
653 |a Fractional calculus 
653 |a Convergence 
653 |a Charged particles 
653 |a Galerkin method 
653 |a Estimates 
653 |a Discretization 
700 1 |a Zhou, Jun  |u College of Computer Science and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China; hongbinchen@csuft.edu.cn 
700 1 |a Chen, Hongbin  |u College of Computer Science and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China; hongbinchen@csuft.edu.cn 
773 0 |t Fractal and Fractional  |g vol. 9, no. 6 (2025), p. 368-382 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223905874/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223905874/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223905874/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch