Relational Contractions of Matkowski–Berinde–Pant Type and an Application to Certain Fractional Differential Equations
Guardado en:
| Publicado en: | Fractal and Fractional vol. 9, no. 6 (2025), p. 348-365 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223906255 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2504-3110 | ||
| 024 | 7 | |a 10.3390/fractalfract9060348 |2 doi | |
| 035 | |a 3223906255 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 100 | 1 | |a Filali Doaa |u Department of Mathematical Science, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia; dkfilali@pnu.edu.sa | |
| 245 | 1 | |a Relational Contractions of Matkowski–Berinde–Pant Type and an Application to Certain Fractional Differential Equations | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper concludes a few fixed-point outcomes involving almost Matkowski contraction-inequality of Pant type in a relational metric space. The findings established here enhance, expand, consolidate and develop several noted outcomes. In order to argue for our investigations, we construct some illustrative examples. We exploit our outcomes to analyze the availability of a (unique) positive solution to certain singular fractional differential equations. | |
| 653 | |a Fractional calculus | ||
| 653 | |a Metric space | ||
| 653 | |a Differential equations | ||
| 653 | |a Theorems | ||
| 700 | 1 | |a Khan, Faizan Ahmad |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); ealshaban@ut.edu.sa (E.A.); mbarakat@ut.edu.sa (M.S.A.) | |
| 700 | 1 | |a Alatawi Adel |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); ealshaban@ut.edu.sa (E.A.); mbarakat@ut.edu.sa (M.S.A.) | |
| 700 | 1 | |a Esmail, Alshaban |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); ealshaban@ut.edu.sa (E.A.); mbarakat@ut.edu.sa (M.S.A.) | |
| 700 | 1 | |a Ali Montaser Saudi |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); ealshaban@ut.edu.sa (E.A.); mbarakat@ut.edu.sa (M.S.A.) | |
| 700 | 1 | |a Alamrani, Fahad M |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; amalatawi@ut.edu.sa (A.A.); ealshaban@ut.edu.sa (E.A.); mbarakat@ut.edu.sa (M.S.A.) | |
| 773 | 0 | |t Fractal and Fractional |g vol. 9, no. 6 (2025), p. 348-365 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223906255/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3223906255/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223906255/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |