Dynamic Vulnerability Knowledge Graph Construction via Multi-Source Data Fusion and Large Language Model Reasoning

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 14, no. 12 (2025), p. 2334-2360
Hovedforfatter: Liu Ruitong
Andre forfattere: Xie Yaxuan, Dang Zexu, Hao Jinyi, Quan Xiaowen, Xiao Yongcai, Peng Chunlei
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3223907961
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14122334  |2 doi 
035 |a 3223907961 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Liu Ruitong  |u School of Cyber Engineering, Xidian University, Xi’an 710126, China; 22009200603@stu.xidian.edu.cn (R.L.); 23009201024@stu.xidian.edu.cn (Z.D.); 23009200774@stu.xidian.edu.cn (J.H.); clpeng@xidian.edu.cn (C.P.) 
245 1 |a Dynamic Vulnerability Knowledge Graph Construction via Multi-Source Data Fusion and Large Language Model Reasoning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the increasing number of network security threats and the frequent occurrence of software vulnerability attacks, the effective management and large-scale retrieval of vulnerability data have become urgent needs. Existing vulnerability information is scattered across heterogeneous sources and is difficult to integrate, which in turn makes it hard for security analysts to quickly retrieve and analyze relevant security knowledge. To address this problem, this paper proposes a method to construct a vulnerability knowledge graph by integrating multi-source vulnerability data, combining graph embedding technology with large language model reasoning to aggregate, infer, and enrich vulnerability knowledge. Experiments demonstrated that our domain-tuned Bidirectional Long Short-Term Memory–Conditional Random Field (BiLSTM-CRF) named entity recognition (NER), enhanced with a cybersecurity dictionary, achieved a 90.1% F1-score for entity extraction. For link prediction, a hybrid Graph Attention Network fused with GPT-3 reasoning boosted Hits1 by 0.137, Hits3 by 0.116, and Hits10 by 0.101 over the baseline. These results confirm that our approach markedly enhanced entity identification and relationship inference, yielding a more complete and dynamically updatable cybersecurity knowledge graph. 
653 |a Language 
653 |a Forgery 
653 |a Dictionaries 
653 |a Accuracy 
653 |a Large language models 
653 |a Graphs 
653 |a Conditional random fields 
653 |a Ontology 
653 |a Neural networks 
653 |a Reasoning 
653 |a Cybersecurity 
653 |a Software reliability 
653 |a Databases 
653 |a Data collection 
653 |a Data integration 
653 |a Natural language processing 
653 |a Network analysis 
653 |a Knowledge representation 
653 |a Semantics 
700 1 |a Xie Yaxuan  |u School of Cyber Engineering, Xidian University, Xi’an 710126, China; 22009200603@stu.xidian.edu.cn (R.L.); 23009201024@stu.xidian.edu.cn (Z.D.); 23009200774@stu.xidian.edu.cn (J.H.); clpeng@xidian.edu.cn (C.P.) 
700 1 |a Dang Zexu  |u School of Cyber Engineering, Xidian University, Xi’an 710126, China; 22009200603@stu.xidian.edu.cn (R.L.); 23009201024@stu.xidian.edu.cn (Z.D.); 23009200774@stu.xidian.edu.cn (J.H.); clpeng@xidian.edu.cn (C.P.) 
700 1 |a Hao Jinyi  |u School of Cyber Engineering, Xidian University, Xi’an 710126, China; 22009200603@stu.xidian.edu.cn (R.L.); 23009201024@stu.xidian.edu.cn (Z.D.); 23009200774@stu.xidian.edu.cn (J.H.); clpeng@xidian.edu.cn (C.P.) 
700 1 |a Quan Xiaowen  |u Yuanjiang Shengbang Safety Technology Group Co., Beijing 100085, China; qxw19@mails.tsinghua.edu.cn 
700 1 |a Xiao Yongcai  |u State Grid Jiangxi Electric Power Research Institute, Nanchang 330052, China; dky_xiaoyc@jx.sgcc.com.cn 
700 1 |a Peng Chunlei  |u School of Cyber Engineering, Xidian University, Xi’an 710126, China; 22009200603@stu.xidian.edu.cn (R.L.); 23009201024@stu.xidian.edu.cn (Z.D.); 23009200774@stu.xidian.edu.cn (J.H.); clpeng@xidian.edu.cn (C.P.) 
773 0 |t Electronics  |g vol. 14, no. 12 (2025), p. 2334-2360 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223907961/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223907961/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223907961/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch