Triangular Fuzzy Finite Element Solution for Drought Flow of Horizontal Unconfined Aquifers

Guardado en:
Detalles Bibliográficos
Publicado en:Hydrology vol. 12, no. 6 (2025), p. 128-152
Autor principal: Tzimopoulos Christos
Otros Autores: Samarinas Nikiforos, Papadopoulos Kyriakos, Evangelides Christos
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223908242
003 UK-CbPIL
022 |a 2306-5338 
024 7 |a 10.3390/hydrology12060128  |2 doi 
035 |a 3223908242 
045 2 |b d20250101  |b d20251231 
100 1 |a Tzimopoulos Christos  |u Laboratory of Hydraulic Works and Environmental Management, Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; tzimo@topo.auth.gr (C.T.); evan@topo.auth.gr (C.E.) 
245 1 |a Triangular Fuzzy Finite Element Solution for Drought Flow of Horizontal Unconfined Aquifers 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, a novel approximate triangular fuzzy finite element method (FEM) is proposed to solve the one-dimensional second-order unsteady nonlinear fuzzy partial differential Boussinesq equation. The physical problem concerns the case of the drought flow of a horizontal unconfined aquifer with a limited breath B and special boundary conditions: (a) at x = 0, the water level is equal to zero, and (b) at x = B, the flow rate is equal to zero due to the presence of an impermeable wall. The initial water table is assumed to be curvilinear, following the form of an inverse incomplete beta function. To account for uncertainties in the system, the hydraulic parameters—hydraulic conductivity (K) and porosity (S)—are treated as fuzzy variables, considering sources of imprecision such as measurement errors and human-induced uncertainties. The performance of the proposed fuzzy FEM scheme is compared with the previously developed orthogonal fuzzy FEM solution as well as with an analytical solution. The results are in close agreement with those of the other methods, with the mean error of the analytical solution found to be equal to <inline-formula>1.19·10−6</inline-formula>. Furthermore, the possibility theory is applied and fuzzy estimators constructed, leading to strong probabilistic interpretations. These findings provide valuable insights into the hydraulic properties of unconfined aquifers, aiding engineers and water resource managers in making informed and efficient decisions for sustainable hydrological and environmental planning. 
653 |a Finite element method 
653 |a Finite volume method 
653 |a Groundwater flow 
653 |a Mathematical analysis 
653 |a Fuzzy sets 
653 |a Boundary conditions 
653 |a Aquifers 
653 |a Flow rates 
653 |a Drought 
653 |a Approximation 
653 |a Human influences 
653 |a Uncertainty 
653 |a Hydraulic conductivity 
653 |a Water levels 
653 |a Water resources management 
653 |a Partial differential equations 
653 |a Boussinesq equations 
653 |a Water table 
653 |a Exact solutions 
653 |a Water resources 
653 |a Boussinesq approximation 
653 |a Finite element analysis 
653 |a Groundwater table 
653 |a Fluid dynamics 
653 |a Porosity 
653 |a Hydraulic properties 
653 |a Drainage 
653 |a Numerical analysis 
653 |a Unconfined aquifers 
653 |a Differential equations 
653 |a Human error 
653 |a Hydraulics 
653 |a Environmental planning 
653 |a Hydrology 
700 1 |a Samarinas Nikiforos  |u Laboratory of Hydraulic Works and Environmental Management, Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; tzimo@topo.auth.gr (C.T.); evan@topo.auth.gr (C.E.) 
700 1 |a Papadopoulos Kyriakos  |u Department of Mathematics, Faculty of Science, Kuwait University, Sabah Al Salem University City, Safat 13060, Kuwait; kyriakos.papadopoulos@ku.edu.kw 
700 1 |a Evangelides Christos  |u Laboratory of Hydraulic Works and Environmental Management, Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; tzimo@topo.auth.gr (C.T.); evan@topo.auth.gr (C.E.) 
773 0 |t Hydrology  |g vol. 12, no. 6 (2025), p. 128-152 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223908242/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223908242/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223908242/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch