DRL-Based Fast Joint Mapping Approach for SFC Deployment

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Electronics vol. 14, no. 12 (2025), p. 2408-2425
Hoofdauteur: Wu, You
Andere auteurs: Hu Hefei, Zhang Ziyi
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3223908396
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14122408  |2 doi 
035 |a 3223908396 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Wu, You 
245 1 |a DRL-Based Fast Joint Mapping Approach for SFC Deployment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The rapid development of Network Function Virtualization (NFV) enables network operators to deliver customized end-to-end services through Service Function Chains (SFCs). However, existing two-stage deployment strategies fail to jointly optimize the placement of Virtual Network Functions (VNFs) and the routing of service traffic, resulting in inefficient resource utilization and increased service latency. This study addresses the challenge of maximizing the acceptance rate of service requests under resource constraints and latency requirements. We propose DRL-FJM, a novel dynamic SFC joint mapping orchestration algorithm based on Deep Reinforcement Learning (DRL). By holistically evaluating network resource states, the algorithm jointly optimizes node and link mapping schemes to effectively tackle the dual challenges of resource limitations and latency constraints in long-term SFC orchestration scenarios. Simulation results demonstrate that compared with existing methods, DRL-FJM improves total traffic served by up to 42.6%, node resource utilization by 17.3%, and link resource utilization by 26.6%, while achieving nearly 100% SFC deployment success. Moreover, our analysis reveals that the proposed algorithm demonstrates strong adaptability and robustness under diverse network conditions. 
653 |a Network function virtualization 
653 |a Operators (mathematics) 
653 |a Optimization 
653 |a Decision making 
653 |a Mapping 
653 |a Algorithms 
653 |a Virtual networks 
653 |a Resource utilization 
653 |a Heuristic 
653 |a Constraints 
653 |a Energy consumption 
653 |a Markov analysis 
700 1 |a Hu Hefei 
700 1 |a Zhang Ziyi 
773 0 |t Electronics  |g vol. 14, no. 12 (2025), p. 2408-2425 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223908396/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223908396/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223908396/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch