Edge Intelligence: A Review of Deep Neural Network Inference in Resource-Limited Environments
Збережено в:
| Опубліковано в:: | Electronics vol. 14, no. 12 (2025), p. 2495-2549 |
|---|---|
| Автор: | |
| Інші автори: | , |
| Опубліковано: |
MDPI AG
|
| Предмети: | |
| Онлайн доступ: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Теги: |
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Короткий огляд: | Deploying deep neural networks (DNNs) in resource-limited environments—such as smartwatches, IoT nodes, and intelligent sensors—poses significant challenges due to constraints in memory, computing power, and energy budgets. This paper presents a comprehensive review of recent advances in accelerating DNN inference on edge platforms, with a focus on model compression, compiler optimizations, and hardware–software co-design. We analyze the trade-offs between latency, energy, and accuracy across various techniques, highlighting practical deployment strategies on real-world devices. In particular, we categorize existing frameworks based on their architectural targets and adaptation mechanisms and discuss open challenges such as runtime adaptability and hardware-aware scheduling. This review aims to guide the development of efficient and scalable edge intelligence solutions. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14122495 |
| Джерело: | Advanced Technologies & Aerospace Database |