A Lightweight and Configurable Flash Filesystem for Low-Power Devices

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Low Power Electronics and Applications vol. 15, no. 2 (2025), p. 22-39
Autor principal: Kachman Ondrej
Otros Autores: Malík, Peter, Baláž Marcel, Majer Libor, Gyepes Gábor
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Low-power embedded devices are widely used in sensor networks, monitoring systems, and industrial applications. These devices typically rely on internal flash memory, where storage is constrained by bootloaders, communication stacks, and other software. Adding external memory increases cost and energy consumption, making efficient memory utilization essential. This article presents key design concepts for developing an efficient, lightweight, and reliable embedded filesystem. It introduces an improved version of the configurable flash filesystem (CFFS), designed to maximize memory utilization, minimize flash wear, and support portability across hardware platforms and operating systems. Reliability mechanisms integrated into CFFS are also discussed. We compare CFFS with widely used low-power embedded filesystems—LittleFS, SPIFFS, and FDS—highlighting its advantages in memory efficiency and reduced flash memory wear. Experimental results demonstrate that CFFS achieves up to 99% memory utilization while significantly reducing erase operations.
ISSN:2079-9268
DOI:10.3390/jlpea15020022
Fuente:Advanced Technologies & Aerospace Database