A Ship Heading Estimation Method Based on DeepLabV3+ and Contrastive Learning-Optimized Multi-Scale Similarity

Shranjeno v:
Bibliografske podrobnosti
izdano v:Journal of Marine Science and Engineering vol. 13, no. 6 (2025), p. 1085-1112
Glavni avtor: Weihao, Tao
Drugi avtorji: Luo Yasong, Tong Jijin, Xia Qingtao, Qu Jianjing
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3223914969
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13061085  |2 doi 
035 |a 3223914969 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Weihao, Tao  |u College of Weaponry Engineering, Naval University of Engineering, Wuhan 430030, China; m23182605@nue.edu.cn (W.T.); tongjj7802@sina.com (J.T.); xiaqing777@163.com (Q.X.) 
245 1 |a A Ship Heading Estimation Method Based on DeepLabV3+ and Contrastive Learning-Optimized Multi-Scale Similarity 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of global maritime trade, high-precision ship heading estimation has become crucial for maritime traffic safety and intelligent shipping. To address the challenge of heading estimation from horizontal-view optical images, this study proposes a novel framework integrating DeepLabV3+ image segmentation with contrastive-learning-optimized multi-scale similarity matching. First, a cascaded image preprocessing method is developed, incorporating linear transformation, bilateral filtering, and the Multi-Scale Retinex with Color Restoration (MSRCR) algorithm to mitigate noise and haze interference and enhance image quality with improved target edge clarity. Subsequently, the DeepLabV3+ network is employed for the precise segmentation of ship targets, generating binarized contour maps for subsequent heading analysis. Based on actual ship dimensional parameters, 3D models are constructed and multi-angle rendered to establish a heading template library. The framework introduces the Multi-Scale Structural Similarity (MS-SSIM) algorithm enhanced by a triplet contrastive learning mechanism that dynamically optimizes feature weights across scales, thereby improving robustness against image degradation and partial occlusion. Experimental results demonstrate that under noise-free, noise-interfered, and mist-occluded conditions, the proposed method achieves mean heading estimation errors of 0.41°, 0.65°, and 0.88°, respectively, significantly outperforming the single-scale SSIM and fixed-weight MS-SSIM approaches. This verification confirms the method’s effectiveness and robustness, offering a novel technical solution for ship heading estimation in maritime surveillance and intelligent navigation systems. 
653 |a Navigation systems 
653 |a Similarity 
653 |a Accuracy 
653 |a Shipping 
653 |a Adaptability 
653 |a Algorithms 
653 |a Optimization 
653 |a Image degradation 
653 |a Image processing 
653 |a Retinex (algorithm) 
653 |a Linear transformations 
653 |a Occlusion 
653 |a Remote sensing 
653 |a Learning 
653 |a Image segmentation 
653 |a Sensors 
653 |a Three dimensional models 
653 |a Traffic accidents & safety 
653 |a Methods 
653 |a Image quality 
653 |a Robustness (mathematics) 
653 |a Noise 
653 |a Environmental 
700 1 |a Luo Yasong  |u College of Weaponry Engineering, Naval University of Engineering, Wuhan 430030, China; m23182605@nue.edu.cn (W.T.); tongjj7802@sina.com (J.T.); xiaqing777@163.com (Q.X.) 
700 1 |a Tong Jijin  |u College of Weaponry Engineering, Naval University of Engineering, Wuhan 430030, China; m23182605@nue.edu.cn (W.T.); tongjj7802@sina.com (J.T.); xiaqing777@163.com (Q.X.) 
700 1 |a Xia Qingtao  |u College of Weaponry Engineering, Naval University of Engineering, Wuhan 430030, China; m23182605@nue.edu.cn (W.T.); tongjj7802@sina.com (J.T.); xiaqing777@163.com (Q.X.) 
700 1 |a Qu Jianjing  |u Jiu Zhi Yang Infrared System Co., Ltd., Wuhan 430223, China; qjj13971446541@163.com 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 6 (2025), p. 1085-1112 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223914969/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223914969/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223914969/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch