Modular Coordination of Vehicle Routing and Bin Packing Problems in Last Mile Logistics

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Logistics vol. 9, no. 2 (2025), p. 70-97
Үндсэн зохиолч: Perić Nikica
Бусад зохиолчид: Kolak Anđelko, Lešić Vinko
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3223923356
003 UK-CbPIL
022 |a 2305-6290 
024 7 |a 10.3390/logistics9020070  |2 doi 
035 |a 3223923356 
045 2 |b d20250401  |b d20250630 
100 1 |a Perić Nikica 
245 1 |a Modular Coordination of Vehicle Routing and Bin Packing Problems in Last Mile Logistics 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Background: Logistics and transport, core of many business processes, are continuously optimized to improve efficiency and market competitiveness. The paper describes a modular coordination of vehicle routing and bin packing problems that enables independent instances of the problems to be joined together, with the aim that the vehicle routing solution satisfies all the constraints from real-world applications. Methods: The vehicle routing algorithm is based on an adaptive memory procedure that also incorporates a simple, one-dimensional bin packing problem. This preliminary packing solution is refined by a complex, three dimensional bin packing for each vehicle to identify the infeasible packages. The method iteratively adjusts virtual volumes until reaching near-optimal routes that respect bin-packing constraints. Results: The coordination enables independent applications of an adaptive memory procedure to vehicle routing and a genetic algorithm approach to bin packing while joining them in a computationally tractable way. Such a coordinated approach is applied to a frequently used public benchmark and proven to provide commensurate costs while significantly lowering algorithm complexity. Conclusions: The proposed method is further validated on a real industrial case study and provided additional savings of 14.48% in average daily distance traveled compared to the current industrial standard. 
653 |a Packing problem 
653 |a Cost control 
653 |a Packaging 
653 |a Heuristic 
653 |a Energy consumption 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a LIFO 
653 |a Vehicles 
700 1 |a Kolak Anđelko 
700 1 |a Lešić Vinko 
773 0 |t Logistics  |g vol. 9, no. 2 (2025), p. 70-97 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223923356/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223923356/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223923356/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch