Spatial Trajectory Tracking of Underactuated Autonomous Underwater Vehicles by Model–Data-Driven Learning Adaptive Robust Control

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Journal of Marine Science and Engineering vol. 13, no. 6 (2025), p. 1151-1175
Kaituhi matua: Guo Linyuan
Ētahi atu kaituhi: Zhou, Ran, Guo Qingchang, Ma Liran, Hu Chuxiong, Luo Jianbin
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3223923685
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13061151  |2 doi 
035 |a 3223923685 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Guo Linyuan  |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) 
245 1 |a Spatial Trajectory Tracking of Underactuated Autonomous Underwater Vehicles by Model–Data-Driven Learning Adaptive Robust Control 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper aims to solve the spatial trajectory tracking control problem of underactuated autonomous underwater vehicles (AUVs) in the presence of system parameter uncertainties and complex external disturbances. To accomplish this goal, a model–data-driven learning adaptive robust control (LARC) strategy is introduced for AUVs. Firstly, a serial iterative learning control (ILC) approach is introduced as feedforward compensation, and then the corresponding trajectory tracking error dynamics model, the Feedforward Compensation–Line of Sight (FFC-LOS) guidance law, and the feedforward compensation-based kinematics controller are designed. Secondly, the dynamics controller is designed for AUVs, which consists of a linear feedback term, a nonlinear robust feedback term, an adjustable model compensation term, and a fast dynamic compensation term. In this control framework, the robust control and fast dynamic compensation parts are utilized to deal with nonlinear uncertainties and disturbances, the projection-type adaptive control part solves the influence caused by the uncertainty of system parameters, and the serial ILC part that is a data-driven learning method can further improve the trajectory tracking accuracy for repetitive tasks. Finally, comparative simulations under different scenarios and different types of disturbances are performed to verify the effectiveness of the proposed control strategy for AUVs. 
653 |a Kinematics 
653 |a Robust control 
653 |a Mathematical models 
653 |a Feedback 
653 |a Adaptation 
653 |a Tracking 
653 |a Line of sight 
653 |a Guidance (motion) 
653 |a Adaptive control 
653 |a Parameter uncertainty 
653 |a Tracking errors 
653 |a Autonomous underwater vehicles 
653 |a Compensation 
653 |a Disturbances 
653 |a Learning 
653 |a Tracking control 
653 |a Neural networks 
653 |a Controllers 
653 |a Feedforward control 
653 |a Design 
653 |a Underwater vehicles 
653 |a Parameter estimation 
653 |a Environmental 
700 1 |a Zhou, Ran  |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) 
700 1 |a Guo Qingchang  |u State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China; gqchang@mail.tsinghua.edu.cn 
700 1 |a Ma Liran  |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) 
700 1 |a Hu Chuxiong  |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) 
700 1 |a Luo Jianbin  |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 6 (2025), p. 1151-1175 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223923685/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223923685/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223923685/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch