Spatial Trajectory Tracking of Underactuated Autonomous Underwater Vehicles by Model–Data-Driven Learning Adaptive Robust Control
I tiakina i:
| I whakaputaina i: | Journal of Marine Science and Engineering vol. 13, no. 6 (2025), p. 1151-1175 |
|---|---|
| Kaituhi matua: | |
| Ētahi atu kaituhi: | , , , , |
| I whakaputaina: |
MDPI AG
|
| Ngā marau: | |
| Urunga tuihono: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Ngā Tūtohu: |
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223923685 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2077-1312 | ||
| 024 | 7 | |a 10.3390/jmse13061151 |2 doi | |
| 035 | |a 3223923685 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231479 |2 nlm | ||
| 100 | 1 | |a Guo Linyuan |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) | |
| 245 | 1 | |a Spatial Trajectory Tracking of Underactuated Autonomous Underwater Vehicles by Model–Data-Driven Learning Adaptive Robust Control | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper aims to solve the spatial trajectory tracking control problem of underactuated autonomous underwater vehicles (AUVs) in the presence of system parameter uncertainties and complex external disturbances. To accomplish this goal, a model–data-driven learning adaptive robust control (LARC) strategy is introduced for AUVs. Firstly, a serial iterative learning control (ILC) approach is introduced as feedforward compensation, and then the corresponding trajectory tracking error dynamics model, the Feedforward Compensation–Line of Sight (FFC-LOS) guidance law, and the feedforward compensation-based kinematics controller are designed. Secondly, the dynamics controller is designed for AUVs, which consists of a linear feedback term, a nonlinear robust feedback term, an adjustable model compensation term, and a fast dynamic compensation term. In this control framework, the robust control and fast dynamic compensation parts are utilized to deal with nonlinear uncertainties and disturbances, the projection-type adaptive control part solves the influence caused by the uncertainty of system parameters, and the serial ILC part that is a data-driven learning method can further improve the trajectory tracking accuracy for repetitive tasks. Finally, comparative simulations under different scenarios and different types of disturbances are performed to verify the effectiveness of the proposed control strategy for AUVs. | |
| 653 | |a Kinematics | ||
| 653 | |a Robust control | ||
| 653 | |a Mathematical models | ||
| 653 | |a Feedback | ||
| 653 | |a Adaptation | ||
| 653 | |a Tracking | ||
| 653 | |a Line of sight | ||
| 653 | |a Guidance (motion) | ||
| 653 | |a Adaptive control | ||
| 653 | |a Parameter uncertainty | ||
| 653 | |a Tracking errors | ||
| 653 | |a Autonomous underwater vehicles | ||
| 653 | |a Compensation | ||
| 653 | |a Disturbances | ||
| 653 | |a Learning | ||
| 653 | |a Tracking control | ||
| 653 | |a Neural networks | ||
| 653 | |a Controllers | ||
| 653 | |a Feedforward control | ||
| 653 | |a Design | ||
| 653 | |a Underwater vehicles | ||
| 653 | |a Parameter estimation | ||
| 653 | |a Environmental | ||
| 700 | 1 | |a Zhou, Ran |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) | |
| 700 | 1 | |a Guo Qingchang |u State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China; gqchang@mail.tsinghua.edu.cn | |
| 700 | 1 | |a Ma Liran |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) | |
| 700 | 1 | |a Hu Chuxiong |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) | |
| 700 | 1 | |a Luo Jianbin |u Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.); luojb@mail.tsinghua.edu.cn (J.L.) | |
| 773 | 0 | |t Journal of Marine Science and Engineering |g vol. 13, no. 6 (2025), p. 1151-1175 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223923685/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223923685/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223923685/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |