Comprehensive MILP Formulation and Solution for Simultaneous Scheduling of Machines and AGVs in a Partitioned Flexible Manufacturing System

Uloženo v:
Podrobná bibliografie
Vydáno v:Machines vol. 13, no. 6 (2025), p. 519-541
Hlavní autor: Zhuang, Cheng
Další autoři: Qu Jingbo, Wang, Tianyu, Lin, Liyong, Bi Youyi, Li, Mian
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924287
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13060519  |2 doi 
035 |a 3223924287 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Zhuang, Cheng  |u UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; mike.z.c@sjtu.edu.cn (C.Z.); qujingbo@sjtu.edu.cn (J.Q.); gunnerwang27@sjtu.edu.cn (T.W.); youyi.bi@sjtu.edu.cn (Y.B.) 
245 1 |a Comprehensive MILP Formulation and Solution for Simultaneous Scheduling of Machines and AGVs in a Partitioned Flexible Manufacturing System 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a comprehensive Mixed-Integer Linear Programming (MILP) formulation for the simultaneous scheduling of machines and Automated Guided Vehicles (AGVs) within a partitioned Flexible Manufacturing System (FMS). The main objective is to numerically optimize the simultaneous scheduling of machines and AGVs while considering various workshop layouts and operational constraints. Three different workshop layouts are analyzed, with varying numbers of machines in partitioned workshop areas A and B, to evaluate the performance and effectiveness of the proposed model. The model is tested in multiple scenarios that combine different layouts with varying numbers of workpieces, followed by an extension to consider dynamic initial conditions in a more generalized MILP framework. Results demonstrate that the proposed MILP formulation efficiently generates globally optimal solutions and consistently outperforms a greedy algorithm enhanced by A*-inspired heuristics. Although computationally intensive for large scenarios, the MILP’s optimal results serve as an exact benchmark for evaluating faster heuristic methods. In addition, the study provides practical insight into the integration of AGVs in modern manufacturing systems, paving the way for more flexible and efficient production planning. The findings of this research are expected to contribute to the development of advanced scheduling strategies in automated manufacturing systems. 
653 |a Linear programming 
653 |a Integer programming 
653 |a Workpieces 
653 |a Performance evaluation 
653 |a Workshops 
653 |a Initial conditions 
653 |a Optimization 
653 |a Greedy algorithms 
653 |a Process planning 
653 |a Flexible manufacturing systems 
653 |a Production planning 
653 |a Automated guided vehicles 
653 |a Strategic planning 
653 |a Heuristic 
653 |a Energy consumption 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Genetic algorithms 
653 |a Flexibility 
653 |a Layouts 
653 |a Mixed integer 
700 1 |a Qu Jingbo  |u UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; mike.z.c@sjtu.edu.cn (C.Z.); qujingbo@sjtu.edu.cn (J.Q.); gunnerwang27@sjtu.edu.cn (T.W.); youyi.bi@sjtu.edu.cn (Y.B.) 
700 1 |a Wang, Tianyu  |u UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; mike.z.c@sjtu.edu.cn (C.Z.); qujingbo@sjtu.edu.cn (J.Q.); gunnerwang27@sjtu.edu.cn (T.W.); youyi.bi@sjtu.edu.cn (Y.B.) 
700 1 |a Lin, Liyong  |u Contemporary Amperex Technology Co., Ltd., Fujian 352100, China; linly02@catl.com 
700 1 |a Bi Youyi  |u UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; mike.z.c@sjtu.edu.cn (C.Z.); qujingbo@sjtu.edu.cn (J.Q.); gunnerwang27@sjtu.edu.cn (T.W.); youyi.bi@sjtu.edu.cn (Y.B.) 
700 1 |a Li, Mian  |u Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China 
773 0 |t Machines  |g vol. 13, no. 6 (2025), p. 519-541 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924287/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223924287/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924287/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch