Machine learning approach to reconstruct density matrices from quantum marginals

Guardat en:
Dades bibliogràfiques
Publicat a:Machine Learning : Science and Technology vol. 6, no. 2 (Jun 2025), p. 025068
Autor principal: Uzcategui-Contreras, Daniel
Altres autors: Guerra, Antonio, Niklitschek, Sebastian, Delgado, Aldo
Publicat:
IOP Publishing
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924515
003 UK-CbPIL
022 |a 2632-2153 
024 7 |a 10.1088/2632-2153/ade48d  |2 doi 
035 |a 3223924515 
045 2 |b d20250601  |b d20250630 
100 1 |a Uzcategui-Contreras, Daniel  |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile 
245 1 |a Machine learning approach to reconstruct density matrices from quantum marginals 
260 |b IOP Publishing  |c Jun 2025 
513 |a Journal Article 
520 3 |a In this work, we propose a machine learning (ML)-based approach to address a specific aspect of the Quantum Marginal Problem: reconstructing a global density matrix compatible with a given set of quantum marginals. Our method integrates a quantum marginal imposition technique with convolutional denoising autoencoders. The loss function is carefully designed to enforce essential physical constraints, including Hermiticity, positivity, and normalization. Through extensive numerical simulations, we demonstrate the effectiveness of our approach, achieving high success rates and accuracy. Furthermore, we show that, in many cases, our model offers a faster alternative to state-of-the-art semidefinite programming solvers without compromising solution quality. These results highlight the potential of ML techniques for solving complex problems in quantum mechanics. 
653 |a Semidefinite programming 
653 |a Machine learning 
653 |a Quantum mechanics 
653 |a Density 
700 1 |a Guerra, Antonio  |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile 
700 1 |a Niklitschek, Sebastian  |u Departamento de Estadítica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile 
700 1 |a Delgado, Aldo  |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile 
773 0 |t Machine Learning : Science and Technology  |g vol. 6, no. 2 (Jun 2025), p. 025068 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924515/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924515/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch