Machine learning approach to reconstruct density matrices from quantum marginals
Guardat en:
| Publicat a: | Machine Learning : Science and Technology vol. 6, no. 2 (Jun 2025), p. 025068 |
|---|---|
| Autor principal: | |
| Altres autors: | , , |
| Publicat: |
IOP Publishing
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223924515 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2632-2153 | ||
| 024 | 7 | |a 10.1088/2632-2153/ade48d |2 doi | |
| 035 | |a 3223924515 | ||
| 045 | 2 | |b d20250601 |b d20250630 | |
| 100 | 1 | |a Uzcategui-Contreras, Daniel |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile | |
| 245 | 1 | |a Machine learning approach to reconstruct density matrices from quantum marginals | |
| 260 | |b IOP Publishing |c Jun 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a In this work, we propose a machine learning (ML)-based approach to address a specific aspect of the Quantum Marginal Problem: reconstructing a global density matrix compatible with a given set of quantum marginals. Our method integrates a quantum marginal imposition technique with convolutional denoising autoencoders. The loss function is carefully designed to enforce essential physical constraints, including Hermiticity, positivity, and normalization. Through extensive numerical simulations, we demonstrate the effectiveness of our approach, achieving high success rates and accuracy. Furthermore, we show that, in many cases, our model offers a faster alternative to state-of-the-art semidefinite programming solvers without compromising solution quality. These results highlight the potential of ML techniques for solving complex problems in quantum mechanics. | |
| 653 | |a Semidefinite programming | ||
| 653 | |a Machine learning | ||
| 653 | |a Quantum mechanics | ||
| 653 | |a Density | ||
| 700 | 1 | |a Guerra, Antonio |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile | |
| 700 | 1 | |a Niklitschek, Sebastian |u Departamento de Estadítica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile | |
| 700 | 1 | |a Delgado, Aldo |u Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción , Concepción, Chile; Millennium Institute for Research in Optics (MIRO) , Concepción, Chile | |
| 773 | 0 | |t Machine Learning : Science and Technology |g vol. 6, no. 2 (Jun 2025), p. 025068 | |
| 786 | 0 | |d ProQuest |t Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223924515/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223924515/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |