Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints

Guardado en:
Detalles Bibliográficos
Publicado en:Machines vol. 13, no. 6 (2025), p. 490-517
Autor principal: Oliveira, Nicolas Lima
Otros Autores: Lemonge Afonso Celso de Castro, Hallak, Patricia Habib, Kyprianidis Konstantinos, Vouros Stavros, Rendón, Manuel A
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924562
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13060490  |2 doi 
035 |a 3223924562 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Oliveira, Nicolas Lima  |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) 
245 1 |a Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary algorithms generated a Pareto front, from which the optimal propeller design is selected. The selected propeller design is evaluated under optimal operational conditions for a specific mission. In this context, two operational approaches for the optimized propellers during flight missions are evaluated. The first approach considers the possibility of only three values for the propeller rotation, while the second allows continuous changes in the rotational speed and pitch angle values, known as the multi-rotational-speed approach. In the second approach, a modal analysis of the propeller is performed using rotating beam theory. The natural frequencies of vibration, constrained by the Campbell diagram, enable an operational analysis and ensure structural integrity by preventing resonance between propeller blades and the rotational procedures. The multi-rotational approach is conducted with and without frequency constraints, resulting in general flight energy reductions of 1.40% and 1.47%, respectively. However, substantial power savings are achieved, namely up to <inline-formula>10%</inline-formula> during critical flight states, which can have a significant impact on future engine design and operability. The main contributions of the research lie in analyzing the multi-rotational approach with vibrational constraints of the optimized propeller. This research advances sustainable aviation practices by focusing on reducing power consumption while maintaining performance. 
653 |a Flight operations 
653 |a Engine design 
653 |a Fluid-structure interaction 
653 |a Optimization techniques 
653 |a Modal analysis 
653 |a Propeller blades 
653 |a Power consumption 
653 |a Pareto optimum 
653 |a Energy consumption 
653 |a Evolutionary algorithms 
653 |a Aircraft 
653 |a Design analysis 
653 |a Structural vibration 
653 |a Design optimization 
653 |a Beam theory (structures) 
653 |a Structural integrity 
653 |a Aerodynamics 
653 |a Genetic algorithms 
653 |a Pitch (inclination) 
653 |a Resonant frequencies 
653 |a Variables 
653 |a Vibration analysis 
653 |a Cost control 
653 |a Constraints 
653 |a Reynolds number 
653 |a Optimization algorithms 
700 1 |a Lemonge Afonso Celso de Castro  |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) 
700 1 |a Hallak, Patricia Habib  |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) 
700 1 |a Kyprianidis Konstantinos  |u School of Business Society and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västeras, Swedenstavros.vouros@mdu.se (S.V.) 
700 1 |a Vouros Stavros  |u School of Business Society and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västeras, Swedenstavros.vouros@mdu.se (S.V.) 
700 1 |a Rendón, Manuel A  |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) 
773 0 |t Machines  |g vol. 13, no. 6 (2025), p. 490-517 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924562/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223924562/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924562/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch