Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints
Guardado en:
| Publicado en: | Machines vol. 13, no. 6 (2025), p. 490-517 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223924562 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2075-1702 | ||
| 024 | 7 | |a 10.3390/machines13060490 |2 doi | |
| 035 | |a 3223924562 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231531 |2 nlm | ||
| 100 | 1 | |a Oliveira, Nicolas Lima |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) | |
| 245 | 1 | |a Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary algorithms generated a Pareto front, from which the optimal propeller design is selected. The selected propeller design is evaluated under optimal operational conditions for a specific mission. In this context, two operational approaches for the optimized propellers during flight missions are evaluated. The first approach considers the possibility of only three values for the propeller rotation, while the second allows continuous changes in the rotational speed and pitch angle values, known as the multi-rotational-speed approach. In the second approach, a modal analysis of the propeller is performed using rotating beam theory. The natural frequencies of vibration, constrained by the Campbell diagram, enable an operational analysis and ensure structural integrity by preventing resonance between propeller blades and the rotational procedures. The multi-rotational approach is conducted with and without frequency constraints, resulting in general flight energy reductions of 1.40% and 1.47%, respectively. However, substantial power savings are achieved, namely up to <inline-formula>10%</inline-formula> during critical flight states, which can have a significant impact on future engine design and operability. The main contributions of the research lie in analyzing the multi-rotational approach with vibrational constraints of the optimized propeller. This research advances sustainable aviation practices by focusing on reducing power consumption while maintaining performance. | |
| 653 | |a Flight operations | ||
| 653 | |a Engine design | ||
| 653 | |a Fluid-structure interaction | ||
| 653 | |a Optimization techniques | ||
| 653 | |a Modal analysis | ||
| 653 | |a Propeller blades | ||
| 653 | |a Power consumption | ||
| 653 | |a Pareto optimum | ||
| 653 | |a Energy consumption | ||
| 653 | |a Evolutionary algorithms | ||
| 653 | |a Aircraft | ||
| 653 | |a Design analysis | ||
| 653 | |a Structural vibration | ||
| 653 | |a Design optimization | ||
| 653 | |a Beam theory (structures) | ||
| 653 | |a Structural integrity | ||
| 653 | |a Aerodynamics | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Pitch (inclination) | ||
| 653 | |a Resonant frequencies | ||
| 653 | |a Variables | ||
| 653 | |a Vibration analysis | ||
| 653 | |a Cost control | ||
| 653 | |a Constraints | ||
| 653 | |a Reynolds number | ||
| 653 | |a Optimization algorithms | ||
| 700 | 1 | |a Lemonge Afonso Celso de Castro |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) | |
| 700 | 1 | |a Hallak, Patricia Habib |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) | |
| 700 | 1 | |a Kyprianidis Konstantinos |u School of Business Society and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västeras, Swedenstavros.vouros@mdu.se (S.V.) | |
| 700 | 1 | |a Vouros Stavros |u School of Business Society and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västeras, Swedenstavros.vouros@mdu.se (S.V.) | |
| 700 | 1 | |a Rendón, Manuel A |u Engineering School, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; nicolasjf@gmail.com (N.L.O.); afonso.lemonge@ufjf.br (A.C.d.C.L.); manuel.rendon@ufjf.br (M.A.R.) | |
| 773 | 0 | |t Machines |g vol. 13, no. 6 (2025), p. 490-517 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223924562/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223924562/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223924562/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |