Artificial Intelligence Meets Bioequivalence: Using Generative Adversarial Networks for Smarter, Smaller Trials

Guardat en:
Dades bibliogràfiques
Publicat a:Machine Learning and Knowledge Extraction vol. 7, no. 2 (2025), p. 47-68
Autor principal: Nikolopoulos Anastasios
Altres autors: Karalis, Vangelis D
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924672
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7020047  |2 doi 
035 |a 3223924672 
045 2 |b d20250401  |b d20250630 
100 1 |a Nikolopoulos Anastasios  |u Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; anastnik@pharm.uoa.gr 
245 1 |a Artificial Intelligence Meets Bioequivalence: Using Generative Adversarial Networks for Smarter, Smaller Trials 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces artificial intelligence as a powerful tool to transform bioequivalence (BE) trials. We apply advanced generative models, specifically Wasserstein Generative Adversarial Networks (WGANs), to create virtual subjects and reduce the need for real human participants in generic drug assessment. Although BE studies typically involve small sample sizes (usually 24 subjects), which may limit the use of AI-generated populations, our findings show that these models can successfully overcome this challenge. To show the utility of generative AI algorithms in BE testing, this study applied Monte Carlo simulations of 2 × 2 crossover BE trials, combined with WGANs. After training of the WGAN model, several scenarios were explored, including sample size, the proportion of subjects used for the synthesis of virtual subjects, and variabilities. The performance of the AI-synthesized populations was tested in two ways: (a) first, by assessing the similarity of the performance with the actual population, and (b) second, by evaluating the statistical power achieved, which aimed to be as high as that of the entire original population. The results demonstrated that WGANs could generate virtual populations with BE acceptance percentages and similarity levels that matched or exceeded those of the original population. This approach proved effective across various scenarios, enhancing BE study sample sizes, reducing costs, and accelerating trial durations. This study highlights the potential of WGANs to improve data augmentation and optimize subject recruitment in BE studies. 
653 |a Simulation 
653 |a Sample size 
653 |a Similarity 
653 |a Data augmentation 
653 |a Artificial intelligence 
653 |a Monte Carlo simulation 
653 |a Neural networks 
653 |a Generative artificial intelligence 
653 |a Generative adversarial networks 
653 |a Statistical power 
653 |a Clinical trials 
653 |a Bioequivalence 
653 |a Pharmacokinetics 
653 |a Algorithms 
653 |a Virtual networks 
653 |a Automation 
653 |a Population (statistical) 
653 |a Efficiency 
700 1 |a Karalis, Vangelis D  |u Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; anastnik@pharm.uoa.gr 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 2 (2025), p. 47-68 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924672/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223924672/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924672/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch