Factors Associated with COVID-19 Mortality in Mexico: A Machine Learning Approach Using Clinical, Socioeconomic, and Environmental Data

Saved in:
Bibliographic Details
Published in:Machine Learning and Knowledge Extraction vol. 7, no. 2 (2025), p. 55-95
Main Author: Díaz-González Lorena
Other Authors: Toribio-Colin, Yael Sharim, Pérez-Sansalvador, Julio César, Lakouari Noureddine
Published:
MDPI AG
Subjects:
Online Access:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924824
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make7020055  |2 doi 
035 |a 3223924824 
045 2 |b d20250401  |b d20250630 
100 1 |a Díaz-González Lorena  |u Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico 
245 1 |a Factors Associated with COVID-19 Mortality in Mexico: A Machine Learning Approach Using Clinical, Socioeconomic, and Environmental Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a COVID-19 mortality is a complex phenomenon influenced by multiple factors. This study aimed to identify factors associated with death in COVID-19 patients by considering clinical, demographic, environmental, and socioeconomic conditions, using machine learning models and a national dataset from Mexico covering all pandemic waves. We integrated data from the national COVID-19 dataset, municipal-level socioeconomic indicators, and water quality contaminants (physicochemical and microbiological). Patients were assigned to one of four datasets (groundwater, lentic, lotic, and coastal) based on their municipality of residence. We trained XGBoost models to predict patient death or survival on balanced subsets of each dataset. Hyperparameters were optimized using a grid search and cross-validation, and feature importance was analyzed using SHAP values, point-biserial correlation, and XGBoost metrics. The models achieved strong predictive performance (F1 score > 0.97). Key risk factors included older age (≥50 years), pneumonia, intubation, obesity, diabetes, hypertension, and chronic kidney disease, while outpatient status, younger age (<40 years), contact with a confirmed case, and care in private medical units were associated with survival. Female sex showed a protective trend. Higher socioeconomic levels appeared protective, whereas lower levels increased risk. Water quality contaminants (e.g., manganese, hardness, fluoride, dissolved oxygen, fecal coliforms) ranked among the top 30 features, suggesting an association between environmental factors and COVID-19 mortality. 
651 4 |a Mexico 
653 |a Datasets 
653 |a Coliforms 
653 |a Contaminants 
653 |a Body mass index 
653 |a Human Development Index 
653 |a Mortality 
653 |a Survival 
653 |a Dissolved oxygen 
653 |a Databases 
653 |a Kidney diseases 
653 |a Water quality 
653 |a Age 
653 |a Machine learning 
653 |a Manganese 
653 |a Death 
653 |a COVID-19 
700 1 |a Toribio-Colin, Yael Sharim  |u Licenciatura en Ciencias, Instituto de Investigación en Ciencias Básicas Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico; yael.toribiocol@uaem.edu.mx 
700 1 |a Pérez-Sansalvador, Julio César  |u Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla 72840, Puebla, Mexico 
700 1 |a Lakouari Noureddine  |u Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla 72840, Puebla, Mexico 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 7, no. 2 (2025), p. 55-95 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924824/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223924824/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924824/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch