Fault Detection in Gearboxes Using Fisher Criterion and Adaptive Neuro-Fuzzy Inference

Guardado en:
Detalles Bibliográficos
Publicado en:Machines vol. 13, no. 6 (2025), p. 447-471
Autor principal: Habbouche Houssem
Otros Autores: Benkedjouh Tarak, Amirat Yassine, Benbouzid Mohamed
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223924863
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13060447  |2 doi 
035 |a 3223924863 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Habbouche Houssem  |u Mechanical Structures Laboratory, Ecole Militaire Polytechnique, Algiers 16046, Algeria; houssem.habbouche@emp.mdn.dz (H.H.); tarak.benkedjouh@emp.mdn.dz (T.B.) 
245 1 |a Fault Detection in Gearboxes Using Fisher Criterion and Adaptive Neuro-Fuzzy Inference 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Gearboxes are autonomous devices essential for power transmission in various mechanical systems. When a failure occurs, it can lead to an inability to perform the required functions, potentially resulting in a complete shutdown of the mechanism and causing significant operational disruptions. Consequently, deploying expert methods for fault detection and diagnosis is crucial to ensuring the reliability and efficiency of these systems. Artificial intelligence (AI) techniques show promise for fault diagnosis, but their accuracy can be hindered by noise and manufacturing imperfections that distort mechanical signatures. Thorough data analysis and preprocessing are vital to preserving these critical features. Validating approaches through numerical simulations before experimentation is essential to identify model limitations and minimize risks. A hybrid approach, combining AI and physics-based models, could provide a robust solution by leveraging the strengths of both domains: AI for its ability to process large volumes of data and physics-based models for their reliability in modeling complex mechanical behaviors. This paper proposes a comprehensive diagnostic methodology. It starts with feature extraction from time-domain analysis, which helps identify critical indicators of gearbox performance. Following this, a feature selection process is applied using the Fisher criterion, which ensures that only the most relevant features are retained for further analysis. These selected features are then employed to train an Adaptive Neuro-Fuzzy Inference System (ANFIS), a sophisticated approach that combines the learning capabilities of neural networks with the reasoning abilities of fuzzy logic. The proposed methodology is evaluated using a dataset of gear faults generated through energy simulations based on a six-degree-of-freedom (6-DOF) model, followed by a secondary validation on an experimental dataset. 
653 |a Classism 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Datasets 
653 |a Wavelet transforms 
653 |a Fuzzy logic 
653 |a Time domain analysis 
653 |a Feature selection 
653 |a Mechanical systems 
653 |a Mechanical drives 
653 |a Automation 
653 |a Localization 
653 |a Fault detection 
653 |a Stress concentration 
653 |a Performance evaluation 
653 |a Computer simulation 
653 |a Gearboxes 
653 |a Data analysis 
653 |a Adaptive systems 
653 |a Principal components analysis 
653 |a Fault diagnosis 
653 |a Reliability 
653 |a Genetic algorithms 
653 |a Classification 
653 |a Inference 
653 |a Power transmission 
653 |a Criteria 
653 |a Lubricants & lubrication 
653 |a Shutdowns 
653 |a Methods 
653 |a Artificial intelligence 
653 |a Degrees of freedom 
700 1 |a Benkedjouh Tarak  |u Mechanical Structures Laboratory, Ecole Militaire Polytechnique, Algiers 16046, Algeria; houssem.habbouche@emp.mdn.dz (H.H.); tarak.benkedjouh@emp.mdn.dz (T.B.) 
700 1 |a Amirat Yassine  |u LabISEN, ISEN Yncrea Ouest, 29200 Brest, France; yassine.amirat@isen-ouest.yncrea.fr 
700 1 |a Benbouzid Mohamed  |u Institut de Recherche Dupuy de Lôme (UMR CNRS 6027), University of Brest, 29238 Brest, France 
773 0 |t Machines  |g vol. 13, no. 6 (2025), p. 447-471 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223924863/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223924863/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223924863/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch