Three-Step Iterative Methodology for the Solution of Extended Ordered XOR-Inclusion Problems Incorporating Generalized Cayley–Yosida Operators

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 12 (2025), p. 1969-1993
Autor principal: Filali Doaa
Otros Autores: Ali, Imran, Ali Montaser Saudi, Eljaneid Nidal H. E., Esmail, Alshaban, Khan, Faizan Ahmad
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223926091
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13121969  |2 doi 
035 |a 3223926091 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Filali Doaa  |u Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dkfilali@pnu.edu.sa 
245 1 |a Three-Step Iterative Methodology for the Solution of Extended Ordered XOR-Inclusion Problems Incorporating Generalized Cayley–Yosida Operators 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The system of extended ordered XOR-inclusion problems (in short, SEOXORIP) involving generalized Cayley and Yosida operators is introduced and studied in this paper. The solution is obtained in a real ordered Banach space using a fixed-point approach. First, we develop the fixed-point lemma for the solution of SEOXORIP. By using the fixed-point lemma, we develop a three-step iterative scheme for obtaining the approximate solution of SEOXORIP. Under the Lipschitz continuous assumptions of the cost mappings, the strong convergence of the scheme is demonstrated. Lastly, we provide a numerical example with a convergence graph generated using MATLAB 2018a to verify the convergence of the sequence generated by the proposed scheme. 
653 |a Approximation 
653 |a Banach spaces 
653 |a Convergence 
653 |a Algorithms 
653 |a Lipschitz condition 
653 |a Operators (mathematics) 
700 1 |a Ali, Imran  |u Department of Mathematics, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram 522302, Andhra Pradesh, India 
700 1 |a Ali Montaser Saudi  |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) 
700 1 |a Eljaneid Nidal H. E.  |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) 
700 1 |a Esmail, Alshaban  |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) 
700 1 |a Khan, Faizan Ahmad  |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) 
773 0 |t Mathematics  |g vol. 13, no. 12 (2025), p. 1969-1993 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223926091/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223926091/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223926091/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch