Three-Step Iterative Methodology for the Solution of Extended Ordered XOR-Inclusion Problems Incorporating Generalized Cayley–Yosida Operators
Guardado en:
| Publicado en: | Mathematics vol. 13, no. 12 (2025), p. 1969-1993 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223926091 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7390 | ||
| 024 | 7 | |a 10.3390/math13121969 |2 doi | |
| 035 | |a 3223926091 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231533 |2 nlm | ||
| 100 | 1 | |a Filali Doaa |u Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dkfilali@pnu.edu.sa | |
| 245 | 1 | |a Three-Step Iterative Methodology for the Solution of Extended Ordered XOR-Inclusion Problems Incorporating Generalized Cayley–Yosida Operators | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The system of extended ordered XOR-inclusion problems (in short, SEOXORIP) involving generalized Cayley and Yosida operators is introduced and studied in this paper. The solution is obtained in a real ordered Banach space using a fixed-point approach. First, we develop the fixed-point lemma for the solution of SEOXORIP. By using the fixed-point lemma, we develop a three-step iterative scheme for obtaining the approximate solution of SEOXORIP. Under the Lipschitz continuous assumptions of the cost mappings, the strong convergence of the scheme is demonstrated. Lastly, we provide a numerical example with a convergence graph generated using MATLAB 2018a to verify the convergence of the sequence generated by the proposed scheme. | |
| 653 | |a Approximation | ||
| 653 | |a Banach spaces | ||
| 653 | |a Convergence | ||
| 653 | |a Algorithms | ||
| 653 | |a Lipschitz condition | ||
| 653 | |a Operators (mathematics) | ||
| 700 | 1 | |a Ali, Imran |u Department of Mathematics, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram 522302, Andhra Pradesh, India | |
| 700 | 1 | |a Ali Montaser Saudi |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) | |
| 700 | 1 | |a Eljaneid Nidal H. E. |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) | |
| 700 | 1 | |a Esmail, Alshaban |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) | |
| 700 | 1 | |a Khan, Faizan Ahmad |u Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; mbarakat@ut.edu.sa (M.S.A.); neljaneid@ut.edu.sa (N.H.E.E.); ealshaban@ut.edu.sa (E.A.) | |
| 773 | 0 | |t Mathematics |g vol. 13, no. 12 (2025), p. 1969-1993 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223926091/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223926091/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223926091/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |