Exploration of Cutting Processing Mode of Low-Rigidity Parts for Intelligent Manufacturing

保存先:
書誌詳細
出版年:Micromachines vol. 16, no. 6 (2025), p. 624-646
第一著者: Zhu, Jianping
その他の著者: Liu Xinna, Peng, Hui, Liu, Wei, Li, Zhiyong
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3223926622
003 UK-CbPIL
022 |a 2072-666X 
024 7 |a 10.3390/mi16060624  |2 doi 
035 |a 3223926622 
045 2 |b d20250101  |b d20251231 
084 |a 231537  |2 nlm 
100 1 |a Zhu, Jianping  |u Rongcheng College, Harbin University of Science and Technology, Weihai 264800, China; zhujianping2017@126.com (J.Z.); woshipenghui@126.com (H.P.) 
245 1 |a Exploration of Cutting Processing Mode of Low-Rigidity Parts for Intelligent Manufacturing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the development of intelligent manufacturing technology, the manufacturing industry is gradually realizing intelligent production. Especially for metal cutting with extremely complex processes, it is of great significance to realize intelligence. Taking the cutting process of aero-engine typical low-rigidity parts as the main line, this article builds an intelligent processing architecture based on a big data platform, which includes customized design of cutting tools, intelligent optimization of cutting parameters, simulation of cutting conditions, and online monitoring and control of cutting processes. At the same time, the realization of related key technologies is explained. Then, this article introduces in detail the intelligent decision-making process based on deep learning, the customized tool design process based on structural features, the simulation process of cutting based on geometric features of parts, as well as the monitoring and control process of Numerical Control (NC) machining based on condition perception. In addition, based on the processing requirements and difficulties of specific parts, formulate a specific intelligent implementation plan under this processing mode. Through the implementation of the above architecture and key technologies, the cutting processing system can automatically optimize the cutting parameters according to real-time working conditions and adjust its own cutting conditions. At the same time, machine tool condition, cutting tool condition, and low-rigidity part condition are real-time monitored to achieve high-precision, efficient, intelligent, and precise cutting of low-rigidity parts. The proposed architecture can provide a reference model for the research and application of intelligent cutting technology for low-rigidity parts. 
651 4 |a China 
653 |a Cutting tools 
653 |a Big Data 
653 |a Accuracy 
653 |a Deep learning 
653 |a Machinery condition monitoring 
653 |a Artificial intelligence 
653 |a Numerical controls 
653 |a Metal cutting 
653 |a Machining 
653 |a Optimization 
653 |a Machine tools 
653 |a Cutting parameters 
653 |a Manufacturing 
653 |a Rigidity 
653 |a Deformation 
653 |a Real time 
653 |a Cloud computing 
653 |a Information technology 
653 |a Customization 
653 |a Intelligent manufacturing systems 
653 |a Internet of Things 
653 |a Efficiency 
653 |a Bottlenecks 
700 1 |a Liu Xinna  |u Rongcheng College, Harbin University of Science and Technology, Weihai 264800, China; zhujianping2017@126.com (J.Z.); woshipenghui@126.com (H.P.) 
700 1 |a Peng, Hui  |u Rongcheng College, Harbin University of Science and Technology, Weihai 264800, China; zhujianping2017@126.com (J.Z.); woshipenghui@126.com (H.P.) 
700 1 |a Liu, Wei  |u Rongcheng Kangyi New Material Technology Co., Ltd., Weihai 264800, China 
700 1 |a Li, Zhiyong  |u Mechanical Engineering College, Shandong University of Technology, Zibo 255049, China; lzy761012@sdut.edu.cn 
773 0 |t Micromachines  |g vol. 16, no. 6 (2025), p. 624-646 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223926622/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223926622/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223926622/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch