Bootstrapping Enhanced Model for Improving Soil Nitrogen Prediction Accuracy in Arid Wheat Fields

Na minha lista:
Detalhes bibliográficos
Publicado no:Nitrogen vol. 6, no. 2 (2025), p. 23-37
Autor principal: Al-Shujairy Qassim A. Talib
Outros Autores: Al-Hedny, Suhad M, Naser, Mohammed A, Shawkat Sadeq Muneer, Ali Ahmed Hatem, Panday Dinesh
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3223927473
003 UK-CbPIL
022 |a 2504-3129 
024 7 |a 10.3390/nitrogen6020023  |2 doi 
035 |a 3223927473 
045 2 |b d20250401  |b d20250630 
100 1 |a Al-Shujairy Qassim A. Talib  |u College of Environmental Sciences, Al-Qasim Green University, Babil 51013, Iraq; qassim.talib@environ.uoqasim.edu.iq (Q.A.T.A.-S.); ahmedenviron94@gmail.com (A.H.A.) 
245 1 |a Bootstrapping Enhanced Model for Improving Soil Nitrogen Prediction Accuracy in Arid Wheat Fields 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Soil nitrogen (N) is a crucial nutrient for agricultural productivity and ecosystem health. The accurate and timely assessment of total soil N is essential for evaluating soil health. This study aimed to determine the impact of bootstrapping techniques on improving the predictive accuracy of indirect total soil N in conventional wheat fields in Al-Muthanna, Iraq. We integrated a novel methodological framework that integrated bootstrapped and non-bootstrapped total soil N data from 110 soil samples along with Landsat 9 imagery on the Google Earth Engine (GEE) platform. The performance of the proposed bootstrapping-enhanced random forest (RF) model was compared to standard RF models for soil N prediction, and outlier samples were analyzed to assess the impact of soil conditions on model performance. Principal components analysis (PCA) identified the key spectral reflectance properties that contribute to the variation in soil N. The PCA results highlighted NIR (band 5) and SWIR2 (band 7) as the primary contributors, explaining over 91.3% of the variation in soil N within the study area. Among the developed models, the log (B5/B7) model performed best in capturing soil N (R2 = 0.773), followed by the ratio (B5/B7) model (R2 = 0.489), while the inverse log transformation (1/log (B5/B7), R2 = 0.191) exhibited the lowest performance. Bootstrapped RF models surpassed non-bootstrapped random forest models, demonstrating enhanced predictive capability for soil N. This study established an efficient framework for improving predictive capacity in areas characterized by limited, low-quality, and incomplete spatial data, offering valuable insights for sustainable nitrogen management in arid regions dominated by monoculture systems. 
651 4 |a Iraq 
653 |a Outliers (statistics) 
653 |a Wheat 
653 |a Accuracy 
653 |a Agricultural production 
653 |a Datasets 
653 |a Models 
653 |a Agricultural ecosystems 
653 |a Landsat 
653 |a Arid zones 
653 |a Principal components analysis 
653 |a Nitrogen 
653 |a Satellite imagery 
653 |a Data processing 
653 |a Monoculture 
653 |a Soil improvement 
653 |a Spectral reflectance 
653 |a Contamination 
653 |a Machine learning 
653 |a Remote sensing 
653 |a Spatial data 
653 |a Soils 
653 |a Environmental conditions 
653 |a Spectrum analysis 
653 |a Fertilizers 
653 |a Soil conditions 
653 |a Arid regions 
653 |a Algorithms 
700 1 |a Al-Hedny, Suhad M  |u College of Environmental Sciences, Al-Qasim Green University, Babil 51013, Iraq; qassim.talib@environ.uoqasim.edu.iq (Q.A.T.A.-S.); ahmedenviron94@gmail.com (A.H.A.) 
700 1 |a Naser, Mohammed A  |u Department of Combating Desertification, College of Agriculture, Al-Muthanna University, Al-Samawah 66001, Iraq; mohammed.naser@mu.edu.iq 
700 1 |a Shawkat Sadeq Muneer  |u College of Food Sciences, Al-Qasim Green University, Babil 51013, Iraq; sadeq.muneer@fosci.uoqasim.edu.iq 
700 1 |a Ali Ahmed Hatem  |u College of Environmental Sciences, Al-Qasim Green University, Babil 51013, Iraq; qassim.talib@environ.uoqasim.edu.iq (Q.A.T.A.-S.); ahmedenviron94@gmail.com (A.H.A.) 
700 1 |a Panday Dinesh  |u Rodale Institute, Kutztown, PA 19530, USA 
773 0 |t Nitrogen  |g vol. 6, no. 2 (2025), p. 23-37 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223927473/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223927473/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223927473/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch