Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Minerals vol. 15, no. 6 (2025), p. 567-581
Váldodahkki: Kubiaki Levandoski William Mateus
Eará dahkkit: Mota, Jonas Duarte, Menegolla Carolina, Suéllen, Tonatto Ferrazzo, Bruschi, Giovani Jordi, Pavan, Korf Eduardo
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Abstrákta:An alternative to conventional methods for mine tailings disposal is stabilization with alkali-activated binders (AABs), developed from agro-industrial waste. Despite increasing interest in this topic, there is still a lack of studies focusing on the stabilization of iron ore tailings (IOTs) using AABs, particularly those that combine the characterization of cementitious gels with an evaluation of leaching behavior. This study assessed the strength, mineralogy, and leaching performance of IOTs stabilized with AABs formulated from rice husk ash (RHA) and hydrated eggshell lime (HEL), using sodium hydroxide as the alkaline activator. Tests included unconfined compressive strength (UCS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and metal leaching analyses. The IOT–AAB mixture with the highest AAB content and dry unit weight achieved an average UCS of 2.14 MPa after 28 days of curing. UCS increased with AAB content, followed by dry unit weight and curing time, the latter showing a non-linear influence. The formation of C–S–H gel was confirmed after 28 days, while N–A–S–H gel was detected as early as 7 days of curing. The cemented IOT–AAB mixtures showed no metal toxicity and effectively encapsulated barium originating from the RHA.
ISSN:2075-163X
DOI:10.3390/min15060567
Gáldu:ABI/INFORM Global