Research on Prediction Method of Ferrous Oxide Content in Sinter Based on Optimized Neural Network

Guardado en:
Detalles Bibliográficos
Publicado en:Minerals vol. 15, no. 6 (2025), p. 553-577
Autor principal: Li, Shaohui
Otros Autores: Cao Yuanyuan, Zhou Zhenjie, Li, Xinghua, Zhu Yanlong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223928452
003 UK-CbPIL
022 |a 2075-163X 
024 7 |a 10.3390/min15060553  |2 doi 
035 |a 3223928452 
045 2 |b d20250101  |b d20251231 
084 |a 231539  |2 nlm 
100 1 |a Li, Shaohui  |u Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin 300456, China; lishh@tiwte.ac.cn (S.L.); caoyy@tiwte.ac.cn (Y.C.); zhouzhj@tiwte.ac.cn (Z.Z.) 
245 1 |a Research on Prediction Method of Ferrous Oxide Content in Sinter Based on Optimized Neural Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As a key parameter in the sintering process, the ferrous oxide content of sinter can reflect the working condition, energy consumption level, and quality level of the final sintered products in the sintering process. It has become a key problem to realize the prediction of ferrous oxide content in sinter and feedback control of sinter quality accordingly. The two commonly used methods for detecting ferrous oxide content in industrial production currently do not meet real-time requirements and cannot provide timely feedback for production regulation. Therefore, research on real-time prediction technology of ferrous oxide content in sinter was carried out, and an optimized back propagation neural network model was established to realize the mapping between characteristic parameters and the FeO content in sinter. The characteristic parameters include image parameters and process parameters. Through the research on the brightness change trend of the machine tail cross-section image, the best cross-section image acquisition method based on brightness difference is realized, and image parameters are obtained by image processing technology. The process parameters were selected using correlation analysis. Through data processing techniques such as data cleaning, normalization, and feature fusion, feature parameters were obtained as input vectors for the neural network. To improve prediction accuracy and system stability, an adaptive learning rate and genetic algorithm were used to optimize the traditional BP neural network. The average test error of the optimized prediction model was 0.32%. Taking actual data production as an example, test data on the FeO content of sinter were extracted from the laboratory. Compared with the FeO content predicted by the system, the prediction time of the system was about 2 h earlier than the test time. In terms of prediction accuracy, the average absolute error was 0.25%, and the absolute prediction error was not more than ±1%. 
653 |a Parameters 
653 |a Working conditions 
653 |a Iron compounds 
653 |a Correlation analysis 
653 |a Brightness 
653 |a Back propagation networks 
653 |a Image processing 
653 |a Steel industry 
653 |a Systems stability 
653 |a Machine learning 
653 |a Energy consumption 
653 |a Prediction models 
653 |a Industrial production 
653 |a Cameras 
653 |a Cross-sections 
653 |a Accuracy 
653 |a Image acquisition 
653 |a Errors 
653 |a Vectors 
653 |a Algorithms 
653 |a Real time 
653 |a Feedback control 
653 |a Process parameters 
653 |a Testing time 
653 |a Data processing 
653 |a Data analysis 
653 |a Feedback 
653 |a Sintering 
653 |a Raw materials 
653 |a Genetic algorithms 
653 |a Oxidation 
653 |a Neural networks 
653 |a Process controls 
653 |a Adaptive learning 
700 1 |a Cao Yuanyuan  |u Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin 300456, China; lishh@tiwte.ac.cn (S.L.); caoyy@tiwte.ac.cn (Y.C.); zhouzhj@tiwte.ac.cn (Z.Z.) 
700 1 |a Zhou Zhenjie  |u Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin 300456, China; lishh@tiwte.ac.cn (S.L.); caoyy@tiwte.ac.cn (Y.C.); zhouzhj@tiwte.ac.cn (Z.Z.) 
700 1 |a Li, Xinghua  |u School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; lixinghua@tju.edu.cn 
700 1 |a Zhu Yanlong  |u Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin 300456, China; lishh@tiwte.ac.cn (S.L.); caoyy@tiwte.ac.cn (Y.C.); zhouzhj@tiwte.ac.cn (Z.Z.) 
773 0 |t Minerals  |g vol. 15, no. 6 (2025), p. 553-577 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223928452/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223928452/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223928452/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch