Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes vol. 13, no. 6 (2025), p. 1689-1713
1. Verfasser: Wang, Lina
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3223939006
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13061689  |2 doi 
035 |a 3223939006 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Wang, Lina  |u Working Station for Postdoctoral Scientific Research, Shengli Oil Administration, Dongying 257100, China; wanglina02.slyt@sinopec.com 
245 1 |a Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. 
653 |a Oil field equipment 
653 |a Electrical loads 
653 |a Dynamic response 
653 |a Distributed generation 
653 |a Parameter identification 
653 |a Electricity distribution 
653 |a Clean technology 
653 |a Energy storage 
653 |a Topology 
653 |a Predictive control 
653 |a Service life 
653 |a Renewable energy 
653 |a Energy resources 
653 |a Energy consumption 
653 |a Voltage 
653 |a Unit loads 
653 |a Compensation 
653 |a Wind power 
653 |a Oil fields 
653 |a Compensation depth 
653 |a Carbon 
653 |a Supercapacitors 
653 |a Renewable resources 
653 |a Voltage sags 
653 |a Pumping 
653 |a Power supply 
653 |a Hybrid structures 
653 |a Hybrid systems 
653 |a Alternative energy sources 
653 |a Control methods 
653 |a Electric power supplies 
653 |a Alternative energy 
773 0 |t Processes  |g vol. 13, no. 6 (2025), p. 1689-1713 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223939006/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223939006/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223939006/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch