PCLC-Net: Parallel Connected Lateral Chain Networks for Infrared Small Target Detection

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 12 (2025), p. 2072-2095
Autor principal: Xu Jielei
Otros Autores: Han Xinheng, Wang, Jiacheng, Feng Xiaoxue, Li Zhenxu, Pan, Feng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Given the widespread influence of U-Net and FPN network architectures on infrared small target detection tasks on existing models, these structures frequently incorporate a significant number of downsampling operations, thereby rendering the preservation of small target information and contextual interaction both challenging and computation-consuming. To tackle these challenges, we introduce a parallel connected lateral chain network (PCLC-Net), an innovative architecture in the domain of infrared small target detection, that preserves large-scale feature maps while minimizing downsampling operations. The PCLC-Net preserves large-scale feature maps to prevent small target information loss, integrates causal-based retention gates (CBR Gates) within each chain for improved feature selection and fusion, and leverages the attention-based network-wide feature map aggregation (AN-FMA) output module to ensure that all feature maps abundant with small target information contribute effectively to the model’s output. The experimental results reveal the PCLC-Net, with minimal nodes and just a single downsampling, achieves near state-of-the-art performance using just 0.16M parameters (40% of the current smallest model), yielding an <inline-formula>IoU</inline-formula> of 80.8%, <inline-formula>Pd</inline-formula> of 95.1%, and <inline-formula>Fa</inline-formula> of <inline-formula>28.6×10−6</inline-formula> on the BIT-SIRST dataset.
ISSN:2072-4292
DOI:10.3390/rs17122072
Fuente:Advanced Technologies & Aerospace Database