Deep Learning Innovations: ResNet Applied to SAR and Sentinel-2 Imagery

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 12 (2025), p. 1961-1999
Autor principal: Bilotta Giuliana
Otros Autores: Bibbò Luigi, Meduri, Giuseppe M, Genovese Emanuela, Barrile Vincenzo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223939992
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17121961  |2 doi 
035 |a 3223939992 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Bilotta Giuliana 
245 1 |a Deep Learning Innovations: ResNet Applied to SAR and Sentinel-2 Imagery 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The elevated precision of data regarding the Earth’s surface, facilitated by the enhanced interoperability among various GNSSs (Global Navigation Satellite Systems), enables the classification of land use and land cover (LULC) via satellites equipped with optical sensors, such as Sentinel-2 of the Copernicus program, which is crucial for land use management and environmental planning. Likewise, data from SAR satellites, such Copernicus’ Sentinel-1 and Jaxa’s ALOS PALSAR, provide diverse environmental investigations, allowing different types of spatial information to be analysed thanks to the particular features of analysis based on radar. Nonetheless, in optical satellites, the relatively low resolution of Sentinel-2 satellites may impede the precision of supervised AI classifiers, crucial for ongoing land use monitoring, especially during the training phase, which can be expensive due to the requirement for advanced technology and extensive training datasets. This project aims to develop an AI classifier utilising high-resolution training data and the resilient architecture of ResNet, in conjunction with the Remote Sensing Image Classification Benchmark (RSI-CB128). ResNet, noted for its deep residual learning capabilities, significantly enhances the classifier’s proficiency in identifying intricate patterns and features from high-resolution images. A test dataset derived from Sentinel-2 raster images is utilised to evaluate the effectiveness of the neural network (NN). Our goals are to thoroughly assess and confirm the efficacy of an AI classifier utilised on high-resolution Sentinel-2 photos. The findings indicate substantial enhancements compared to current classification methods, such as U-Net, Vision Transformer (ViT), and OBIA, underscoring ResNet’s transformative capacity to elevate the precision of land use classification. 
653 |a Spatial analysis 
653 |a Accuracy 
653 |a Image resolution 
653 |a Earth surface 
653 |a Earth 
653 |a Remote sensing 
653 |a Image processing 
653 |a Land use 
653 |a Outdoor air quality 
653 |a Machine learning 
653 |a Land cover 
653 |a Satellites 
653 |a Deep learning 
653 |a Radiation 
653 |a Agriculture 
653 |a Environmental management 
653 |a Datasets 
653 |a Spatial data 
653 |a Neural networks 
653 |a Infrastructure 
653 |a Land use management 
653 |a Classification 
653 |a Sensors 
653 |a Empowerment 
653 |a High resolution 
653 |a Effectiveness 
653 |a Image classification 
653 |a Land management 
653 |a Drones 
653 |a Environmental monitoring 
653 |a Optical measuring instruments 
653 |a Land use classification 
653 |a Land use planning 
653 |a Environmental planning 
653 |a Global navigation satellite system 
700 1 |a Bibbò Luigi 
700 1 |a Meduri, Giuseppe M 
700 1 |a Genovese Emanuela 
700 1 |a Barrile Vincenzo 
773 0 |t Remote Sensing  |g vol. 17, no. 12 (2025), p. 1961-1999 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223939992/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223939992/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223939992/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch