Optimizing Data Consistency in UAV Multispectral Imaging for Radiometric Correction and Sensor Conversion Models

Na minha lista:
Detalhes bibliográficos
Publicado no:Remote Sensing vol. 17, no. 12 (2025), p. 2001-2022
Autor principal: Yang, Weiguang
Outros Autores: Fu Huaiyuan, Xu Weicheng, Wu Jinhao, Liu, Shiyuan, Li, Xi, Tan Jiangtao, Lan Yubin, Zhang, Lei
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3223940085
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17122001  |2 doi 
035 |a 3223940085 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Yang, Weiguang  |u College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; wgyang@scau.edu.cn (W.Y.); wjh@stu.scau.edu.cn (J.W.); ylan@scau.edu.cn (Y.L.) 
245 1 |a Optimizing Data Consistency in UAV Multispectral Imaging for Radiometric Correction and Sensor Conversion Models 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recent advancements in precision agriculture have been significantly bolstered by the Uncrewed Aerial Vehicles (UAVs) equipped with multispectral sensors. These systems are pivotal in transforming sensor-recorded Digital Number (DN) values into universal reflectance, crucial for ensuring data consistency irrespective of collection time, region, and illumination. This study, conducted across three regions in China using Sequoia and Phantom 4 Multispectral cameras, focused on examining the effects of radiometric correction on data consistency and accuracy, and developing a conversion model for data from these two sensors. Our findings revealed that radiometric correction substantially enhances data consistency in vegetated areas for both sensors, though its impact on non-vegetated areas is limited. Recalibrating reflectance for calibration plates significantly improved the consistency of band values and the accuracy of vegetation index calculations for both cameras. Decision tree and random forest models emerged as more effective for data conversion between the sensors, achieving R2 values up to 0.91. Additionally, the P4M generally outperformed the Sequoia in accuracy, particularly with standard reflectance calibration. These insights emphasize the critical role of radiometric correction in UAV remote sensing for precision agriculture, underscoring the complexities of sensor data consistency and the potential for generalization of models across multi-sensor platforms. 
651 4 |a United Kingdom--UK 
651 4 |a Shenzhen China 
651 4 |a China 
653 |a Reflectance 
653 |a Software 
653 |a Models 
653 |a Sensors 
653 |a Calibration 
653 |a Cameras 
653 |a Remote sensing 
653 |a Agriculture 
653 |a Decision trees 
653 |a Data conversion 
653 |a Accuracy 
653 |a Vegetation 
653 |a Wind 
653 |a Vegetation index 
653 |a Precision agriculture 
653 |a Radiometric correction 
653 |a Cost analysis 
653 |a Multisensor applications 
653 |a Climate 
700 1 |a Fu Huaiyuan  |u College of Agriculture, South China Agricultural University, Guangzhou 510642, China; hyfu@stu.scau.edu.cn (H.F.); lsy@stu.scau.edu.cn (S.L.); xili@stu.scau.edu.cn (X.L.); jttan@stu.scau.edu.cn (J.T.) 
700 1 |a Xu Weicheng  |u Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; xwc@gdaas.cn 
700 1 |a Wu Jinhao  |u College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; wgyang@scau.edu.cn (W.Y.); wjh@stu.scau.edu.cn (J.W.); ylan@scau.edu.cn (Y.L.) 
700 1 |a Liu, Shiyuan  |u College of Agriculture, South China Agricultural University, Guangzhou 510642, China; hyfu@stu.scau.edu.cn (H.F.); lsy@stu.scau.edu.cn (S.L.); xili@stu.scau.edu.cn (X.L.); jttan@stu.scau.edu.cn (J.T.) 
700 1 |a Li, Xi  |u College of Agriculture, South China Agricultural University, Guangzhou 510642, China; hyfu@stu.scau.edu.cn (H.F.); lsy@stu.scau.edu.cn (S.L.); xili@stu.scau.edu.cn (X.L.); jttan@stu.scau.edu.cn (J.T.) 
700 1 |a Tan Jiangtao  |u College of Agriculture, South China Agricultural University, Guangzhou 510642, China; hyfu@stu.scau.edu.cn (H.F.); lsy@stu.scau.edu.cn (S.L.); xili@stu.scau.edu.cn (X.L.); jttan@stu.scau.edu.cn (J.T.) 
700 1 |a Lan Yubin  |u College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; wgyang@scau.edu.cn (W.Y.); wjh@stu.scau.edu.cn (J.W.); ylan@scau.edu.cn (Y.L.) 
700 1 |a Zhang, Lei  |u College of Agriculture, South China Agricultural University, Guangzhou 510642, China; hyfu@stu.scau.edu.cn (H.F.); lsy@stu.scau.edu.cn (S.L.); xili@stu.scau.edu.cn (X.L.); jttan@stu.scau.edu.cn (J.T.) 
773 0 |t Remote Sensing  |g vol. 17, no. 12 (2025), p. 2001-2022 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223940085/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223940085/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223940085/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch