A Novel Audio-Perception-Based Algorithm for Physiological Monitoring

保存先:
書誌詳細
出版年:Sensors vol. 25, no. 12 (2025), p. 3582-3607
第一著者: Zhang Zixuan
その他の著者: Jin Wenxuan, Huang Dejiao, Sun, Zhongwei
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3223941736
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25123582  |2 doi 
035 |a 3223941736 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Zhang Zixuan  |u College of Science, Qingdao University of Technology, Qingdao 266520, China; 7711cgoswd@gmail.com (Z.Z.); huangdejiao28@163.com (D.H.) 
245 1 |a A Novel Audio-Perception-Based Algorithm for Physiological Monitoring 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Exercise metrics are critical for assessing health, but real-time heart rate and respiration measurements remain challenging. We propose a physiological monitoring system that uses an in-ear microphone to extract heart rate and respiration from faint ear canal signals. An improved non-negative matrix factorization (NMF) algorithm combines with a short-time Fourier transform (STFT) to separate physiological components, while an inverse Fourier transform (IFT) reconstructs the signal. The earplug effect enhances the low-frequency components, thereby improving the signal quality and noise immunity. Heart rate is derived from short-term energy and zero-crossing rate, while a BiLSTM-based model can refine the breathing phases and calculate indicators such as respiratory rate. Experiments have shown that the average accuracy can reach 91% under various conditions, exceeding 90% in different environments and under different weights, thus ensuring the system’s robustness. 
610 4 |a Apple Inc 
653 |a Physiology 
653 |a Physical fitness 
653 |a Smartphones 
653 |a Exercise intensity 
653 |a Headphones 
653 |a Neural networks 
653 |a Signal processing 
653 |a Sensors 
653 |a Microphones 
653 |a Wearable computers 
653 |a Noise 
653 |a Methods 
653 |a Algorithms 
653 |a Monitoring systems 
653 |a Respiration 
653 |a Sound 
653 |a Heart rate 
700 1 |a Jin Wenxuan  |u College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; 22020036024@ouc.edu.cn 
700 1 |a Huang Dejiao  |u College of Science, Qingdao University of Technology, Qingdao 266520, China; 7711cgoswd@gmail.com (Z.Z.); huangdejiao28@163.com (D.H.) 
700 1 |a Sun, Zhongwei  |u College of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China 
773 0 |t Sensors  |g vol. 25, no. 12 (2025), p. 3582-3607 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223941736/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223941736/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223941736/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch