On Data Selection and Regularization for Underdetermined Vibro-Acoustic Source Identification

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 12 (2025), p. 3767-3791
Autor principal: Jiang Laixu
Otros Autores: Liu Jingqiao, Jiang, Xin, Pang Yuezhao
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223941746
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25123767  |2 doi 
035 |a 3223941746 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Jiang Laixu 
245 1 |a On Data Selection and Regularization for Underdetermined Vibro-Acoustic Source Identification 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The number of hologram points in near-field acoustical holography (NAH) for a vibro-acoustic system plays a vital role in conditioning the transfer function between the source and measuring points. The requirement for many overdetermined hologram points for extended sources to obtain high accuracy poses a problem for the practical applications of NAH. Furthermore, overdetermination does not generally ensure enhanced accuracy, stability, and convergence, owing to the problem of rank deficiency. To achieve satisfactory reconstruction accuracy with underdetermined hologram data, the best practice for choosing hologram points and regularization methods is determined by comparing cross-linked sets of data-sorting and regularization methods. Three typical data selection and treatment methods are compared: iterative discarding of the most dependent data, monitoring singular value changes during the data reduction process, and zero padding in the patch holography technique. To test the regularization method for inverse conditioning, which is used together with the data selection method, the Tikhonov method, Bayesian regularization, and the data compression method are compared. The inverse equivalent source method is chosen as the holography method, and a numerical test is conducted with a point-excited thin plate. The simulation results show that selecting hologram points using the effective independence method, combined with regularization via compressed sensing, significantly reduces the reconstruction error and enhances the modal assurance criterion value. The experimental results also support the proposed best practice for inverting underdetermined hologram data by integrating the NAH data selection and regularization techniques. 
653 |a Sparsity 
653 |a Regularization methods 
653 |a Algorithms 
653 |a Acoustics 
653 |a Inverse problems 
653 |a Central limit theorem 
700 1 |a Liu Jingqiao 
700 1 |a Jiang, Xin 
700 1 |a Pang Yuezhao 
773 0 |t Sensors  |g vol. 25, no. 12 (2025), p. 3767-3791 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223941746/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223941746/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223941746/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch