DRGNet: Enhanced VVC Reconstructed Frames Using Dual-Path Residual Gating for High-Resolution Video

Guardat en:
Dades bibliogràfiques
Publicat a:Sensors vol. 25, no. 12 (2025), p. 3744-3776
Autor principal: Gai Zezhen
Altres autors: Das Tanni, Choi, Kiho
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223942071
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25123744  |2 doi 
035 |a 3223942071 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Gai Zezhen  |u Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea; gaizezhen@khu.ac.kr (Z.G.); tannidas@khu.ac.kr (T.D.) 
245 1 |a DRGNet: Enhanced VVC Reconstructed Frames Using Dual-Path Residual Gating for High-Resolution Video 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, with the rapid development of the Internet and mobile devices, the high-resolution video industry has ushered in a booming golden era, making video content the primary driver of Internet traffic. This trend has spurred continuous innovation in efficient video coding technologies, such as Advanced Video Coding/H.264 (AVC), High Efficiency Video Coding/H.265 (HEVC), and Versatile Video Coding/H.266 (VVC), which significantly improves compression efficiency while maintaining high video quality. However, during the encoding process, compression artifacts and the loss of visual details remain unavoidable challenges, particularly in high-resolution video processing, where the massive amount of image data tends to introduce more artifacts and noise, ultimately affecting the user’s viewing experience. Therefore, effectively reducing artifacts, removing noise, and minimizing detail loss have become critical issues in enhancing video quality. To address these challenges, this paper proposes a post-processing method based on Convolutional Neural Network (CNN) that improves the quality of VVC-reconstructed frames through deep feature extraction and fusion. The proposed method is built upon a high-resolution dual-path residual gating system, which integrates deep features from different convolutional layers and introduces convolutional blocks equipped with gating mechanisms. By ingeniously combining gating operations with residual connections, the proposed approach ensures smooth gradient flow while enhancing feature selection capabilities. It selectively preserves critical information while effectively removing artifacts. Furthermore, the introduction of residual connections reinforces the retention of original details, achieving high-quality image restoration. Under the same bitrate conditions, the proposed method significantly improves the Peak Signal-to-Noise Ratio (PSNR) value, thereby optimizing video coding quality and providing users with a clearer and more detailed visual experience. Extensive experimental results demonstrate that the proposed method achieves outstanding performance across Random Access (RA), Low Delay B-frame (LDB), and All Intra (AI) configurations, achieving BD-Rate improvements of 6.1%, 7.36%, and 7.1% for the luma component, respectively, due to the remarkable PSNR enhancement. 
653 |a Coding standards 
653 |a Datasets 
653 |a Deep learning 
653 |a Video industry 
653 |a Adaptability 
653 |a Neural networks 
653 |a Signal processing 
700 1 |a Das Tanni  |u Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea; gaizezhen@khu.ac.kr (Z.G.); tannidas@khu.ac.kr (T.D.) 
700 1 |a Choi, Kiho  |u Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea; gaizezhen@khu.ac.kr (Z.G.); tannidas@khu.ac.kr (T.D.) 
773 0 |t Sensors  |g vol. 25, no. 12 (2025), p. 3744-3776 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223942071/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223942071/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223942071/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch