Detection of Electric Network Frequency in Audio Using Multi-HCNet

Guardat en:
Dades bibliogràfiques
Publicat a:Sensors vol. 25, no. 12 (2025), p. 3697-3720
Autor principal: Li, Yujin
Altres autors: Lu Tianliang, Peng Shufan, He Chunhao, Zhao, Kai, Yang, Gang, Chen, Yan
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223942199
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25123697  |2 doi 
035 |a 3223942199 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Li, Yujin 
245 1 |a Detection of Electric Network Frequency in Audio Using Multi-HCNet 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the increasing application of electrical network frequency (ENF) in forensic audio and video analysis, ENF signal detection has emerged as a critical technology. However, high-pass filtering operations commonly employed in modern communication scenarios, while effectively removing infrasound to enhance communication quality at reduced costs, result in a substantial loss of fundamental frequency information, thereby degrading the performance of existing detection methods. To tackle this issue, this paper introduces Multi-HCNet, an innovative deep learning model specifically tailored for ENF signal detection in high-pass filtered environments. Specifically, the model incorporates an array of high-order harmonic filters (AFB), which compensates for the loss of fundamental frequency by capturing high-order harmonic components. Additionally, a grouped multi-channel adaptive attention mechanism (GMCAA) is proposed to precisely distinguish between multiple frequency signals, demonstrating particular effectiveness in differentiating between 50 Hz and 60 Hz fundamental frequency signals. Furthermore, a sine activation function (SAF) is utilized to better align with the periodic nature of ENF signals, enhancing the model’s capacity to capture periodic oscillations. Experimental results indicate that after hyperparameter optimization, Multi-HCNet exhibits superior performance across various experimental conditions. Compared to existing approaches, this study not only significantly improves the detection accuracy of ENF signals in complex environments, achieving a peak accuracy of 98.84%, but also maintains an average detection accuracy exceeding 80% under high-pass filtering conditions. These findings demonstrate that even in scenarios where fundamental frequency information is lost, the model remains capable of effectively detecting ENF signals, offering a novel solution for ENF signal detection under extreme conditions of fundamental frequency absence. Moreover, this study successfully distinguishes between 50 Hz and 60 Hz fundamental frequency signals, providing robust support for the practical deployment and extension of ENF signal applications. 
653 |a Forgery 
653 |a Machine learning 
653 |a Design 
653 |a Audio recordings 
653 |a Accuracy 
653 |a Usability 
653 |a Deep learning 
653 |a Forensic sciences 
653 |a Fourier transforms 
653 |a Multimedia 
653 |a Neural networks 
653 |a Signal processing 
700 1 |a Lu Tianliang 
700 1 |a Peng Shufan 
700 1 |a He Chunhao 
700 1 |a Zhao, Kai 
700 1 |a Yang, Gang 
700 1 |a Chen, Yan 
773 0 |t Sensors  |g vol. 25, no. 12 (2025), p. 3697-3720 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223942199/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223942199/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223942199/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch