A Stochastic Framework for Saint-Venant Torsion in Spherical Shells: Monte Carlo Implementation of the Feynman–Kac Approach

Shranjeno v:
Bibliografske podrobnosti
izdano v:Symmetry vol. 17, no. 6 (2025), p. 878-900
Glavni avtor: Moghaddam, Behrouz Parsa
Drugi avtorji: Zaky, Mahmoud A, Sedaghat Alireza, Galhano Alexandra
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3223942472
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17060878  |2 doi 
035 |a 3223942472 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Moghaddam, Behrouz Parsa  |u Department of Mathematics, La.C., Islamic Azad University, Lahijan P.O. Box 44169-39515, Iran; bparsa@iau.ac.ir 
245 1 |a A Stochastic Framework for Saint-Venant Torsion in Spherical Shells: Monte Carlo Implementation of the Feynman–Kac Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This research introduces an innovative probabilistic method for examining torsional stress behavior in spherical shell structures through Monte Carlo simulation techniques. The spherical geometry of these components creates distinctive computational difficulties for conventional analytical and deterministic numerical approaches when solving torsion-related problems. The authors develop a comprehensive mesh-free Monte Carlo framework built upon the Feynman–Kac formula, which maintains the geometric symmetry of the domain while offering a probabilistic solution representation via stochastic processes on spherical surfaces. The technique models Brownian motion paths on spherical surfaces using the Euler–Maruyama numerical scheme, converting the Saint-Venant torsion equation into a problem of stochastic integration. The computational implementation utilizes the Fibonacci sphere technique for achieving uniform point placement, employs adaptive time-stepping strategies to address pole singularities, and incorporates efficient algorithms for boundary identification. This symmetry-maintaining approach circumvents the mesh generation complications inherent in finite element and finite difference techniques, which typically compromise the problem’s natural symmetry, while delivering comparable precision. Performance evaluations reveal nearly linear parallel computational scaling across up to eight processing cores with efficiency rates above 70%, making the method well-suited for multi-core computational platforms. The approach demonstrates particular effectiveness in analyzing torsional stress patterns in thin-walled spherical components under both symmetric and asymmetric boundary scenarios, where traditional grid-based methods encounter discretization and convergence difficulties. The findings offer valuable practical recommendations for material specification and structural design enhancement, especially relevant for pressure vessel and dome structure applications experiencing torsional loads. However, the probabilistic characteristics of the method create statistical uncertainty that requires cautious result interpretation, and computational expenses may surpass those of deterministic approaches for less complex geometries. Engineering analysis of the outcomes provides actionable recommendations for optimizing material utilization and maintaining structural reliability under torsional loading conditions. 
653 |a Finite element method 
653 |a Accuracy 
653 |a Torsional stress 
653 |a Performance evaluation 
653 |a Brownian motion 
653 |a Pressure vessels 
653 |a Finite difference method 
653 |a Numerical analysis 
653 |a Structural design 
653 |a Statistical analysis 
653 |a Boundary conditions 
653 |a Symmetry 
653 |a Efficiency 
653 |a Machine learning 
653 |a Stochastic processes 
653 |a Spherical shells 
653 |a Partial differential equations 
653 |a Coordinate transformations 
653 |a Fourier transforms 
653 |a Probabilistic methods 
653 |a Monte Carlo simulation 
653 |a Probability theory 
653 |a Stochastic models 
653 |a Algorithms 
653 |a Structural reliability 
653 |a Mesh generation 
700 1 |a Zaky, Mahmoud A  |u Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia; mibrahimm@imamu.edu.sa 
700 1 |a Sedaghat Alireza  |u Department of Mechanical Engineering, La.C., Islamic Azad University, Lahijan P.O. Box 44169-39515, Iran; sedaghat.alirezaa@iau.ac.ir 
700 1 |a Galhano Alexandra  |u Faculdade de Ciências Naturais, Engenharias e Tecnologias, Universidade Lusófona—CUP, Rua Augusto Rosa 24, 4000-098 Porto, Portugal 
773 0 |t Symmetry  |g vol. 17, no. 6 (2025), p. 878-900 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223942472/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223942472/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223942472/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch