Decentralized Federated Learning with Node Incentive and Role Switching Mechanism for Network Traffic Prediction in NFV Environment

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Symmetry vol. 17, no. 6 (2025), p. 970-996
Váldodahkki: Hu, Ying
Eará dahkkit: Liu, Ben, Li, Jianyong, Jia Linlin
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3223942794
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17060970  |2 doi 
035 |a 3223942794 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Hu, Ying 
245 1 |a Decentralized Federated Learning with Node Incentive and Role Switching Mechanism for Network Traffic Prediction in NFV Environment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In network function virtualization (NFV) environments, dynamic network traffic prediction with unique symmetric and asymmetric traffic patterns is critical for efficient resource orchestration and service chain optimization. Traditional centralized prediction models face risks of cross-provider data privacy leakage when network service providers collaborate with resource providers to deliver services. To address this issue, we propose a decentralized federated learning method for network traffic prediction, which ensures that historical network traffic data remain stored locally without requiring cross-provider sharing. To further mitigate interference from malicious provider behaviors on network traffic prediction, we design a node incentive mechanism that dynamically adjusts node roles (e.g., “Aggregator”, “Worker Node”, “Residual Node”, and “Evaluator”). When a node exhibits malicious behavior, its contribution score is reduced; otherwise, it is rewarded. Simulation experiments conducted on an NFV platform using public network traffic datasets demonstrate that the proposed method maintains prediction accuracy even in scenarios with a high proportion of malicious nodes, alleviates their adverse effects, and ensures prediction stability. 
653 |a Network function virtualization 
653 |a Software 
653 |a Accuracy 
653 |a Deep learning 
653 |a Network management systems 
653 |a Forecasting 
653 |a Communication 
653 |a Prediction models 
653 |a Optimization techniques 
653 |a Communications traffic 
653 |a Manuscripts 
653 |a Neural networks 
653 |a Nodes 
653 |a Traffic flow 
653 |a Blockchain 
653 |a Systems stability 
653 |a Privacy 
653 |a Time series 
653 |a Federated learning 
653 |a Fuzzy logic 
653 |a Resource management 
700 1 |a Liu, Ben 
700 1 |a Li, Jianyong 
700 1 |a Jia Linlin 
773 0 |t Symmetry  |g vol. 17, no. 6 (2025), p. 970-996 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223942794/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223942794/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223942794/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch