A Novel Framework for Co-Expansion Planning of Transmission Lines and Energy Storage Devices Considering Unit Commitment
Uloženo v:
| Vydáno v: | Technologies vol. 13, no. 6 (2025), p. 241-259 |
|---|---|
| Hlavní autor: | |
| Další autoři: | , , |
| Vydáno: |
MDPI AG
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3223943034 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7080 | ||
| 024 | 7 | |a 10.3390/technologies13060241 |2 doi | |
| 035 | |a 3223943034 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231637 |2 nlm | ||
| 100 | 1 | |a de Oliveira Edimar José | |
| 245 | 1 | |a A Novel Framework for Co-Expansion Planning of Transmission Lines and Energy Storage Devices Considering Unit Commitment | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper presents a methodology for the co-expansion planning of transmission lines and energy storage systems, considering unit commitment constraints and uncertainties in load demand and wind generation. The problem is formulated as a mixed-integer nonlinear program and solved using a decomposition-based approach that combines a genetic algorithm with mixed-integer linear programming. Uncertainties are modeled through representative day scenarios obtained via clustering. The methodology is validated on a modified IEEE 24-bus system. The results show that co-planning reduces total expansion costs by 14.69%, annual operating costs by 26.19%, and wind curtailment by 91.99% compared to transmission only expansion. These improvements are due to the flexibility introduced by energy storage systems, which enables more efficient thermal dispatch, reduces fuel consumption, and minimizes renewable energy curtailment. | |
| 653 | |a Linear programming | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Integer programming | ||
| 653 | |a Clustering | ||
| 653 | |a Transmission lines | ||
| 653 | |a Optimization | ||
| 653 | |a Renewable resources | ||
| 653 | |a Decomposition | ||
| 653 | |a Variables | ||
| 653 | |a Energy storage | ||
| 653 | |a Mixed integer | ||
| 653 | |a Unit commitment | ||
| 653 | |a Operating costs | ||
| 653 | |a Alternative energy sources | ||
| 653 | |a Energy resources | ||
| 653 | |a Uncertainty | ||
| 653 | |a Nonlinear programming | ||
| 700 | 1 | |a Nepomuceno Lucas Santiago | |
| 700 | 1 | |a de Oliveira Leonardo Willer | |
| 700 | 1 | |a de Paula Arthur Neves | |
| 773 | 0 | |t Technologies |g vol. 13, no. 6 (2025), p. 241-259 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3223943034/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3223943034/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3223943034/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |