Computational Modeling of Low-Abundance Proteins in Venom Gland Transcriptomes: Bothrops asper and Bothrops jararaca

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Toxins vol. 17, no. 6 (2025), p. 262-289
Egile nagusia: Espín-Angulo, Joseph
Beste egile batzuk: Vela, Doris
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3223945838
003 UK-CbPIL
022 |a 2072-6651 
024 7 |a 10.3390/toxins17060262  |2 doi 
035 |a 3223945838 
045 2 |b d20250101  |b d20251231 
084 |a 231638  |2 nlm 
100 1 |a Espín-Angulo, Joseph  |u Facultad de Hábitat, Infraestructura y Creatividad, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador; josephahrim@gmail.com 
245 1 |a Computational Modeling of Low-Abundance Proteins in Venom Gland Transcriptomes: <i>Bothrops asper</i> and <i>Bothrops jararaca</i> 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Snake venoms contain numerous toxic proteins, but low-abundance proteins often remain uncharacterized due to identification challenges. This study employs a bioinformatics approach to identify and structurally model low-abundance proteins from the venom gland transcriptomes of Bothrops asper and Bothrops jararaca. Using tools such as tblastn, Jalview, and CHIMERA, we analyzed sequences and structural features of proteins including arylsulfatase, CRISP (Cysteine-Rich Secretory Protein), von Willebrand factor type D (vWFD), and dihydroorotate dehydrogenase (DHODH), and identified potential new isoforms of SVMP-PIIIb (Ba_1) and botrocetin in B. asper. Protein models were generated with AlphaFold2, compared with crystallized structures from the Protein Data Bank (PDB), and validated using Procheck, ERRAT, and Verify3D. Conserved motifs and domains were annotated through Pfam and InterPro, revealing structural elements that suggest possible roles in venom physiology and toxicity. These findings emphasize the potential of computational biology to characterize structurally relevant but experimentally inaccessible venom proteins, and to lay the groundwork for future functional validation. 
653 |a Physiology 
653 |a Transcriptomes 
653 |a Venom 
653 |a Phylogenetics 
653 |a Toxicity 
653 |a Bioinformatics 
653 |a Crystallization 
653 |a Isoforms 
653 |a Proteases 
653 |a Von Willebrand factor 
653 |a Computer applications 
653 |a Potassium 
653 |a Peptides 
653 |a Venom toxins 
653 |a Venom gland 
653 |a Chimeras 
653 |a Dihydroorotate dehydrogenase 
653 |a Proteins 
653 |a Allergens 
653 |a Cadmium 
653 |a Abundance 
653 |a Snakes 
653 |a Structural members 
653 |a Arylsulfatase 
653 |a Enzymes 
653 |a Bothrops jararaca 
653 |a Bothrops asper 
653 |a Environmental 
700 1 |a Vela, Doris  |u Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador 
773 0 |t Toxins  |g vol. 17, no. 6 (2025), p. 262-289 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223945838/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223945838/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223945838/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch