An Improved Extraction Scheme for High-Frequency Injection in the Realization of Effective Sensorless PMSM Control
Uloženo v:
| Vydáno v: | World Electric Vehicle Journal vol. 16, no. 6 (2025), p. 326-344 |
|---|---|
| Hlavní autor: | |
| Další autoři: | |
| Vydáno: |
MDPI AG
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | High-frequency (HF) injection is a widely used technique for low-speed implementation of position sensorless permanent magnet synchronous motor control. A key component of this technique is the tracking loop control system, which extracts rotor position error and utilizes proportional–integral regulation as a position observer for estimating the rotor position. Generally, this process relies on band-pass filters (BPFs) and low-pass filters (LPFs) to modulate signals in the quadrature current to obtain rotor position error information. However, limitations in filter accuracy and dynamic response lead to prolonged convergence times and timing inconsistencies in the estimation process, which affects real-time motor control performance. To address these issues, this study proposes an exponential moving average (EMA)-based scheme for rotor position error extraction, offering a rapid response under dynamic conditions such as direction reversals, step speed changes, and varying loads. EMA is used to pass the original rotor position information carried by the quadrature current signal, which contains HF components, with a specified smoothing factor. Then, after the synchronous demodulation process, EMA is employed to extract rotor position error information for the position observer to estimate the rotor position. Due to its computational simplicity and fast response in handling dynamic conditions, the proposed method can serve as an alternative to BPF and LPF, which are commonly used for rotor position information extraction, while also reducing computational burden and improving performance. Finally, to demonstrate its feasibility and effectiveness in improving rotor position estimation accuracy, the proposed system is experimentally validated by comparing it with a conventional system. |
|---|---|
| ISSN: | 2032-6653 |
| DOI: | 10.3390/wevj16060326 |
| Zdroj: | Engineering Database |