Rango: Adaptive Retrieval-Augmented Proving for Automated Software Verification

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 347-359
Үндсэн зохиолч: Thompson, Kyle
Бусад зохиолчид: Saavedra, Nuno, Carrott, Pedro, Fisher, Kevin, Sanchez-Stern, Alex, Brun, Yuriy, Ferreira, Joao F, Lerner, Sorin, First, Emily
Хэвлэсэн:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3223972140
003 UK-CbPIL
024 7 |a 10.1109/ICSE55347.2025.00161  |2 doi 
035 |a 3223972140 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Thompson, Kyle  |u University of California,San Diego,CA,USA 
245 1 |a Rango: Adaptive Retrieval-Augmented Proving for Automated Software Verification 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)Conference Start Date: 2025 April 26Conference End Date: 2025 May 6Conference Location: Ottawa, ON, CanadaFormal verification using proof assistants, such as Coq, enables the creation of high-quality software. However, the verification process requires significant expertise and manual effort to write proofs. Recent work has explored automating proof synthesis using machine learning and large language models (LLMs). This work has shown that identifying relevant premises, such as lemmas and definitions, can aid synthesis. We present Rango, a fully automated proof synthesis tool for Coq that automatically identifies relevant premises and also similar proofs from the current project and uses them during synthesis. Rango uses retrieval augmentation at every step of the proof to automatically determine which proofs and premises to include in the context of its fine-tuned LLM. In this way, Rango adapts to the project and to the evolving state of the proof. We create a new dataset, CoqStoq, of 2,226 open-source Coq projects and 196,929 theorems from GitHub, which includes both training data and a curated evaluation benchmark of well-maintained projects. On this benchmark, Rango synthesizes proofs for 32.0% of the theorems, which is 29% more theorems than the prior state-of-the-art tool Tactician. Our evaluation also shows that Rango adding relevant proofs to its context leads to a 47% increase in the number of theorems proven. 
653 |a Program verification (computers) 
653 |a Theorems 
653 |a Large language models 
653 |a Automation 
653 |a Machine learning 
653 |a Synthesis 
653 |a Context 
653 |a Benchmarks 
653 |a Retrieval 
653 |a Economic 
700 1 |a Saavedra, Nuno  |u INESC-ID & IST, University of Lisbon,Lisbon,Portugal 
700 1 |a Carrott, Pedro  |u Imperial College London,London,UK 
700 1 |a Fisher, Kevin  |u University of California,San Diego,CA,USA 
700 1 |a Sanchez-Stern, Alex  |u University of Massachusetts,Amherst,MA,USA 
700 1 |a Brun, Yuriy  |u University of Massachusetts,Amherst,MA,USA 
700 1 |a Ferreira, Joao F  |u INESC-ID & IST, University of Lisbon,Lisbon,Portugal 
700 1 |a Lerner, Sorin  |u University of California,San Diego,CA,USA 
700 1 |a First, Emily  |u University of California,San Diego,CA,USA 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 347-359 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223972140/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch