Program Synthesis for Quantum Applications

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Deng, Haowei
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3224426968
003 UK-CbPIL
020 |a 9798286437481 
035 |a 3224426968 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Deng, Haowei 
245 1 |a Program Synthesis for Quantum Applications 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Quantum computing has the potential to revolutionize various fields by solving problems intractable for classical computers. However, developing efficient quantum programs remains challenging due to the unique constraints of quantum systems, including noise, limited qubit connectivity, and hardware variability. Unlike classical programming, where high-level abstractions and optimized compilers ease development, quantum programming still relies heavily on low-level circuit representations, making manual implementation complex and error-prone. Program synthesis, an approach that automatically generates programs satisfying given specifications, offers a promising solution by optimizing quantum circuits while minimizing human effort. However, applying classical program synthesis techniques to quantum computing presents unique challenges across different abstraction levels. The development of novel synthesis and verification applications specifically tailored for quantum programming is highly desired.In this thesis, we introduce three novel quantum program synthesis frameworks addressing key challenges across different levels of quantum computing. First, we present QSynth, the first framework for synthesizing unitary quantum programs with recursive structures, enabling efficient automated verification. Second, we introduce MQCC, a quantum meta-programming framework that balances trade-offs among multiple constraints specific to targeted applications and hardware. Finally, we propose NuQes, a neuro-symbolic quantum error correction (QEC) code synthesis framework that leverages heuristic functions generated by large language models (LLMs) to optimize QEC code design. Together, these frameworks advance quantum program synthesis by improving efficiency, reducing errors, and enhancing scalability. 
653 |a Computer science 
653 |a Quantum physics 
653 |a Language 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3224426968/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3224426968/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch