Improving Human Action Recognition in Videos with CNN– sLSTM and Soft Attention Mechanism

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Electrical Systems vol. 21, no. 1 (2025), p. 122-138
Autor principal: Khaled, Merit
Otros Autores: Mohammed, Beladgham
Publicado:
Engineering and Scientific Research Groups
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3224658062
003 UK-CbPIL
022 |a 1112-5209 
035 |a 3224658062 
045 2 |b d20250101  |b d20250126 
100 1 |a Khaled, Merit  |u Laboratory of TIT, Department of Electrical Engineering, Tahri Mohammed University of Bechar, Algeria 
245 1 |a Improving Human Action Recognition in Videos with CNN– sLSTM and Soft Attention Mechanism 
260 |b Engineering and Scientific Research Groups  |c 2025 
513 |a Journal Article 
520 3 |a Action recognition in videos has become crucial in computer vision because of its diverse applications, such as multimedia indexing and surveillance in public environments. The incorporation of attention mechanisms into deep learning has gained considerable attention. This approach aims to emulate the human visual processing system by enabling models to focus on pertinent aspects of a scene and derive significant insights. This study introduces an advanced soft attention mechanism designed to enhance the CNN-sLSTM architecture for recognizing human actions in videos. We used the VGG19 convolutional neural network to extract spatial features from the video frames, whereas the sLSTM network models the temporal relationships between frames. The performance of our model was assessed using two widely used datasets, HMDB-51 and UCF-101, with precision as the key evaluation metric. Our results indicate substantial improvements, achieving accuracy scores of 53.12% (base approach) and 67.18% (with attention) for HMDB-51 and 83.98% (base approach) and 94.15% (with attention) for UCF-101. These results underscore the effectiveness of the proposed soft attention mechanism in improving the performance of video action recognition models. 
653 |a Computer vision 
653 |a Frames (data processing) 
653 |a Video 
653 |a Machine learning 
653 |a Human activity recognition 
653 |a Artificial neural networks 
653 |a Deep learning 
653 |a Surveillance 
653 |a Video recordings 
653 |a Electrical engineering 
653 |a Sensors 
653 |a Neural networks 
700 1 |a Mohammed, Beladgham  |u Laboratory of TIT, Department of Electrical Engineering, Tahri Mohammed University of Bechar, Algeria 
773 0 |t Journal of Electrical Systems  |g vol. 21, no. 1 (2025), p. 122-138 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3224658062/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3224658062/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch