Assessing the effect of ensemble learning algorithms and validation approach on estimating forest aboveground biomass: a case study of natural secondary forest in Northeast China

Guardat en:
Dades bibliogràfiques
Publicat a:Geo-Spatial Information Science vol. 28, no. 2 (Apr 2025), p. 609
Autor principal: Jin, Hungil
Altres autors: Zhao, Yinghui, Pak, Unil, Zhen, Zhen, So, Kumryong
Publicat:
Taylor & Francis Ltd.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3224790444
003 UK-CbPIL
022 |a 1009-5020 
022 |a 1993-5153 
024 7 |a 10.1080/10095020.2024.2311261  |2 doi 
035 |a 3224790444 
045 2 |b d20250401  |b d20250430 
100 1 |a Jin, Hungil  |u Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China; Faculty of Forest Science, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea 
245 1 |a Assessing the effect of ensemble learning algorithms and validation approach on estimating forest aboveground biomass: a case study of natural secondary forest in Northeast China 
260 |b Taylor & Francis Ltd.  |c Apr 2025 
513 |a Case Study Journal Article 
520 3 |a Accurate estimation of forest aboveground biomass is essential for the assessment of regional carbon cycle and the climate change in the terrestrial ecosystem. Currently, ensemble learning algorithms and cross-validation methods have been widely applied to estimate regional forest Above Ground Biomass (AGB). However, the effects of ensemble learning algorithms, validation methods, and their interactions on forest AGB estimation were rarely investigated. Based on Landsat 8 Operational Land Imager (OLI) imagery, Airborne Laser Scanning (ALS) data and China’s National Forest Continuous Inventory data, this study explored the effects of five ensemble learning algorithms, including Simple Averaging (SA), Weighted Averaging (WA), Stacked Generalization (SG), Random Forest (RF) and Extreme Gradient Boosting (XGBoost), and two validation approaches (i.e. 10-fold and leave-one-out cross-validation) on the AGB estimation of the Natural Secondary Forests (NSFs) in northeast China. The results revealed that the ensemble learning algorithms that combine heterogenous-based models (i.e. SA, WA, SG) generally produced higher accuracy than the base models (i.e. Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Regression (SVR), Convolutional Neural Network (CNN)). Among all ensemble learning algorithms, the SG algorithm has the highest accuracy whereas the XGBoost algorithm has the lowest accuracy. Although prediction models considerably impact the accuracy of AGB estimation, the validation approach also plays a non-negligible role in AGB estimation. The leave-one-out cross-validation produced much higher accuracy than the 10-fold cross-validation using the same prediction model and tends to generate over-optimistic AGB estimates compared to 10-fold cross-validation, especially for the averaging and stacking ensemble learning algorithms (i.e. SA, WA, SG). This study highlights the potential challenges of applying a leave-one-out cross-validation approach and provides a scientific foundation for the feasibility of different ensemble learning algorithms and cross-validation approaches for accurate AGB estimation. 
651 4 |a China 
653 |a Carbon cycle 
653 |a Accuracy 
653 |a Landsat 
653 |a Artificial neural networks 
653 |a Climate change 
653 |a Biomass 
653 |a Machine learning 
653 |a Decision trees 
653 |a Airborne lasers 
653 |a Forest biomass 
653 |a Support vector machines 
653 |a Prediction models 
653 |a National forests 
653 |a Algorithms 
653 |a Ensemble learning 
653 |a Estimation 
653 |a Remote sensing 
653 |a Regional analysis 
653 |a Environmental 
700 1 |a Zhao, Yinghui  |u Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China 
700 1 |a Pak, Unil  |u Center for Ecological Research, Northeast Forestry University, Harbin, China 
700 1 |a Zhen, Zhen  |u Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China 
700 1 |a So, Kumryong  |u Faculty of Forest Science, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea; College of Forestry Economics and Management, Northeast Forestry University, Harbin, China 
773 0 |t Geo-Spatial Information Science  |g vol. 28, no. 2 (Apr 2025), p. 609 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3224790444/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3224790444/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch