Land use/land cover (LULC) classification using hyperspectral images: a review

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Geo-Spatial Information Science vol. 28, no. 2 (Apr 2025), p. 345
Tác giả chính: Chen, Lou
Tác giả khác: Al-qaness, Mohammed A A, AL-Alimi, Dalal, Dahou, Abdelghani, Mohamed Abd Elaziz, Abualigah, Laith, Ewees, Ahmed A
Được phát hành:
Taylor & Francis Ltd.
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3224790717
003 UK-CbPIL
022 |a 1009-5020 
022 |a 1993-5153 
024 7 |a 10.1080/10095020.2024.2332638  |2 doi 
035 |a 3224790717 
045 2 |b d20250401  |b d20250430 
100 1 |a Chen, Lou  |u College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, China 
245 1 |a Land use/land cover (LULC) classification using hyperspectral images: a review 
260 |b Taylor & Francis Ltd.  |c Apr 2025 
513 |a Journal Article 
520 3 |a In the rapidly evolving realm of remote sensing technology, the classification of Hyperspectral Images (HSIs) is a pivotal yet formidable task. Hindered by inherent limitations in hyperspectral imaging, enhancing the accuracy and efficiency of HSI classification remains a critical and much-debated issue. This review study focuses on a key application area in HSI classification: Land Use/Land Cover (LULC). Our study unfolds in fourfold approaches. First, we present a systematic review of LULC hyperspectral image classification, delving into its background and key challenges. Second, we compile and analyze a number of datasets specific to LULC hyperspectral classification, offering a valuable resource. Third, we explore traditional machine learning models and cutting-edge methods in this field, with a particular focus on deep learning, and spectral decomposition techniques. Finally, we comprehensively analyze future developmental trajectories in HSI classification, pinpointing potential research challenges. This review aspires to be a cornerstone resource, enlightening researchers about the current landscape and future prospects of hyperspectral image classification. 
653 |a Land use 
653 |a Image classification 
653 |a Classification 
653 |a Deep learning 
653 |a Machine learning 
653 |a Land cover 
653 |a Hyperspectral imaging 
653 |a Remote sensing 
653 |a Environmental 
700 1 |a Al-qaness, Mohammed A A  |u College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, China; Zhejiang Optoelectronics Research Institute, Jinhua, China 
700 1 |a AL-Alimi, Dalal  |u School of Computer Science, China University of Geosciences, Wuhan, China 
700 1 |a Dahou, Abdelghani  |u Faculty of Computer Sciences and Mathematics, Ahmed Draia University, Adrar, Algeria 
700 1 |a Mohamed Abd Elaziz  |u Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt; Faculty of Computer Science & Engineering, Galala University, Suze, Egypt; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates 
700 1 |a Abualigah, Laith  |u Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Jordan 
700 1 |a Ewees, Ahmed A  |u Department of Computer, Damietta University, Damietta, Egypt 
773 0 |t Geo-Spatial Information Science  |g vol. 28, no. 2 (Apr 2025), p. 345 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3224790717/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3224790717/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch